首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   1篇
海洋学   3篇
  2018年   2篇
  2017年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Seasonal and latitudinal distributions of amplitudes of quasi-biennial variations in total NO2 content (NO2 TC), total ozone content (TOC), and stratospheric temperature are obtained. NO2 TC data from ground-based spectrometric measurements within the Network for the Detection of Atmospheric Composition Change (NDACC), TOC data from satellite measurements, and stratospheric temperature data from ERA-Interim reanalysis are used for the analysis. The differences in the NO2 TC diurnal cycles are identified between the westerly and easterly phases of the quasi-biennial oscillations (QBO) of equatorial stratospheric wind. The QBO effects in the NO2 TC, TOC, and stratospheric temperature in the Northern (NH) and Southern (SH) hemispheres are most significant in the winter–spring periods, with essential differences between the NH and SH. The NO2 TC in the Antarctic is less for the westerly phase of the QBO than that for the easterly phase, and the NO2 TC quasi-biennial variations in the SH mid-latitudes are opposite of the variations in the Antarctic. In the NH, the winter values of the NO2 TC are generally less during the westerly QBO phase than during the easterly phase, whereas in spring, on the contrary, the values for the westerly QBO phase exceed those for the easterly phase. Along with NO2, the features of the quasi-biennial variations of TOC and stratospheric temperature are discussed. Possible mechanisms of the quasi-biennial variations of the analyzed parameters are considered for the different latitudinal zones.  相似文献   
2.
Doklady Earth Sciences - This paper reports on the first experimental evidence of the impact of a solar proton event on the stratospheric NO2 content derived from ground-based spectrometric...  相似文献   
3.
Characteristic features of changes in the vertical distribution and column content of NO2, total ozone, and stratospheric temperature have been revealed as a result of major sudden stratospheric warmings (SSWs). Strong negative anomalies of column NO2, total ozone and stratospheric temperature are caused by the displacement of the stratospheric circumpolar vortex aside from the pole. Strong positive anomalies of column NO2 and total ozone are observed more frequently under SSWs accompanied by splitting of the stratospheric circumpolar vortex and are caused by the transport of stratospheric air from the low latitudes. Major SSWs can lead to significant changes in the vertical profile of NO2. The changes in different stratospheric layers can be opposite to each other when the edge of the polar vortex is over a site of ground-based observations.  相似文献   
4.
Statistical characteristics of major and minor sudden stratospheric warmings (SSWs) in the Northern Hemisphere (NH) for 1958–2015 are analyzed using data of NCEP-NCAR, ERA 40, and ERA-Interim reanalyses. Dependencies of the number of major SSWs with the displacement of the circumpolar stratospheric vortex and the number of minor SSWs on the phase of the quasi-biennial oscillation (QBO) of the equatorial stratospheric wind and on the level of solar activity (SA) in the 11-year solar cycle have been revealed. Major SSWs accompanied by a displacement of the polar vortex occur more often at a high level of SA and at the easterly phase of the QBO in the 50–40 hPa layer, while minor SSWs occur more often at a low SA level and at the westerly phase of the QBO. An analysis of spatiotemporal dynamics of the stratospheric polar vortex at major SSWs is performed. The most probable directions of vortex displacement caused by SSWs have been revealed. Influences of the major SSWs on the total contents of NO2 and ozone, as well as on stratosphere temperature, are analyzed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号