首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   1篇
地质学   7篇
天文学   2篇
  2019年   2篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
Recent studies have shown that major meteorite groups possess their own characteristic 54Cr values, demonstrating the utility of Cr isotopes for identifying genetic relationships between the planetary materials in conjunction with other classical tools, such as oxygen isotopes. In this study, we performed Cr isotope analyses for whole rocks and chemically separated phases of the new CM2 chondrite, Sutter's Mill (SM 43 and 51). The two whole rocks of Sutter's Mill show essentially identical ε54Cr excesses (SM 43 = +0.95 ± 0.09ε, SM 51 = +0.88 ± 0.07ε), relative to the Earth. These values are the same within error with that of the CM2‐type Murchison (+0.89 ± 0.08ε), suggesting that parent bodies of Sutter's Mill and Murchison were formed from the same precursor materials in the solar nebula. Large ε54Cr excess of up to 29.40ε is observed in the silicate phase of Sutter's Mill, while that of Murchison shows 15.74ε. Importantly, the leachate fractions of both Sutter's Mill and Murchison form a steep linear anticorrelation between ε54Cr and ε53Cr, cross‐cutting the positive correlation previously observed in carbonaceous chondrites. The fact that L4 acid leachate fraction contains higher 54Cr excesses than that of L5 step designed to dissolve refractory minerals suggests that spinel is not a major 54Cr carrier. We also note that L5 contains 53Cr anomalies lower than the solar initial value, suggesting it carries a component of nucleosynthetic anomaly unrelated to the 53Mn decay. We have identified five endmember components of nucleosynthetic origin among the early solar system materials.  相似文献   
3.
A carbonaceous chondrite was recovered immediately after the fall near the village of Diepenveen in the Netherlands on October 27, 1873, but came to light only in 2012. Analysis of sodium and poly‐aromatic hydrocarbon content suggests little contamination from handling. Diepenveen is a regolith breccia with an overall petrology consistent with a CM classification. Unlike most other CM chondrites, the bulk oxygen isotopes are extremely 16O rich, apparently dominated by the signature of anhydrous minerals, distributed on a steep slope pointing to the domain of intrinsic CM water. A small subset plots closer to the normal CM regime, on a parallel line 2 ‰ lower in δ17O. Different lithologies in Diepenveen experienced varying levels of aqueous alteration processing, being less aqueously altered at places rather than more heated. The presence of an agglutinate grain and the properties of methanol‐soluble organic compounds point to active impact processing of some of the clasts. Diepenveen belongs to a CM clan with ~5 Ma CRE age, longer than most other CM chondrites, and has a relatively young K‐Ar resetting age of ~1.5 Ga. As a CM chondrite, Diepenveen may be representative of samples soon to be returned from the surface of asteroid (162173) Ryugu by the Hayabusa2 spacecraft.  相似文献   
4.
Structural changes of synthetic opal by heat treatment   总被引:1,自引:0,他引:1  
The structural changes of synthetic opal by heat treatment up to 1,400 °C were investigated using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared and Raman spectroscopies. The results indicate that the dehydration and condensation of silanol in opal are very important factors in the structural evolution of heat-treated synthetic opal. Synthetic opal releases water molecules and silanols by heat treatment up to 400 °C, where the dehydration of silanol may lead to the condensation of a new Si–O–Si network comprising a four-membered ring structure of SiO4 tetrahedra, even at 400 °C. Above 600 °C, water molecules are lost and the opal surface and internal silanol molecules are completely dehydrated by heat effect, and the medium-temperature range structure of opal may begin to thermally reconstruct to six-membered rings of SiO4 tetrahedra. Above 1,000 °C, the opal structure almost approaches that of silica glass with an average structure of six-membered rings. Above 1,200 °C, the opal changes to low-cristobalite; however, minor evidence of low-tridymite stacking was evident after heat treatment at 1,400 °C.  相似文献   
5.
Five ferruginous deposit samples formed from neutral hot springs were analyzed to determine whether they consisted of a mixture of silica, hydrous iron oxide or iron silicate by differential thermal analysis (DTA), infrared (IR) spectroscopy, powder X-ray diffraction (XRD), and 57Fe Mssbauer spectroscopy. The Si/Fe atomic ratios of the deposits ranged from 0.25 to 0.45, and were smaller than those of hisingerite (12), but apparently close to those of siliceous ferrihydrite (0.250.5). Si was confirmed to be present as monomeric or oligomeric silicate from the Si-O stretching vibration frequencies on the IR spectra. Judging from the results of DTA, which minerals starting to produce after heating, and a relationship between Si-O stretching vibration frequency and Si/Fe atomic ratio proposed by Henmi et al. (1981), all the deposits in this study were concluded to be mixtures of various siliceous ferri-hydrites with low and high Si/Fe atomic ratios. Moreover, by comparing the chemical properties of hot spring waters, the formation conditions of siliceous ferrihydrite were also discussed.  相似文献   
6.
Combined determination of Cr and Ti isotopes of planetary materials offers a means with which to investigate their genetic relationship and the evolution of the protoplanetary disk. Here, we report the new sequential chemical separation procedure for combined Cr and Ti isotope ratio measurements. It comprises three steps: (a) Fe removal using AG1‐X8 anion exchange resin, (b) Ti separation using TODGA resin and (c) Cr separation using AG50W‐X8 cation exchange resin (with one additional step of Ti purification using AG1‐X8 anion exchange resin for samples having high Cr/Ti and Ca/Ti ratios). We applied the proposed procedure to terrestrial and meteorite samples with various compositions. Typical recovery rates of 90–100% were achieved with total procedural Cr and Ti blanks of 3–5 and 2–3 ng, respectively. We measured the Cr and Ti isotope compositions of the separated samples using thermal ionisation mass spectrometry and multiple collector‐inductively coupled plasma‐mass spectrometry, respectively. Our Cr and Ti isotope data were found to be consistent with those of previous studies of individual Cr and Ti isotopic compositions of the meteorites. These results demonstrate the capability of our separation method when applied to combined high‐precision Cr and Ti isotope analyses for single digests of planetary materials.  相似文献   
7.
A shock-wave compression experiment using synthesized silica gel was investigated as a model for a comet impact event on the Earth’s surface. The sample shocked at 20.7 GPa showed considerable structural changes, a release of water molecules, and the dehydration of silanol (Si–OH) that led to the formation of a new Si–O–Si network structure containing larger rings (e.g., six-membered ring of SiO4 tetrahedra). The high aftershock temperature at 20.7 GPa, which could be close to 800 °C, influenced the sample structure. However, some silanols, which were presumed to be the mutually hydrogen-bonded silanol group, remained at pressures >20.7 GPa. This type of silanol along with a small number of water molecules may remain even after shock compression at 30.9 GPa, although the intermediate structure of the sample recovered was similar to that of silica glass.  相似文献   
8.
The adsorption behavior of Zn2+ ions onto the surface of amorphous aluminosilicates was studied using both potentiometric and spectroscopic methods (XANES: X-ray Absorption Near-Edge Structure). The aluminosilicates were prepared with different Al/Si ratios in order to compare the reactivities of surface aluminol and silanol groups toward Zn2+ ions. Potentiometric experiments were performed by maintaining the reacting suspensions at constant pH, ionic strength, and solid concentration, while Zn concentration was increased by stepwise addition. Our results showed that the surface aluminol and silanol groups possess significantly different reactivities toward Zn2+ ions. The reaction of Zn2+ ions with aluminol groups occurs through three processes: (i) surface complexation, (ii) dissolution, and (iii) re-sorption. A stoichiometric relationship was confirmed for the surface complexation between the aluminol groups and Zn2+ ions: two moles of H+ ions were released for one mole of Zn2+ ion adsorption. Following the surface complexation process, measurable amounts of zinc and aluminum ions were found to be mobilized from the surface of the solid to the liquid phase; subsequently, these ions precipitated on the solid surface, and possibly formed a co-precipitate with the hydrotalcite-type structure. On the other hand, a stoichiometric relationship was not obtained for the sorption of Zn2+ ions on silanol groups, and therefore, it was concluded that Zn2+ ions are retained on the surface of amorphous aluminosilicates by two different reactions. One reaction involves the surface complexation between Zn2+ ions and surface aluminol groups, which proceeds rapidly. The other reaction is the slow retention of Zn2+ ions onto silanol and/or aluminol groups, which could be the surface precipitation of Zn(OH)2 or the co-precipitation of Zn2+-Al3+ hydroxides. It can be suggested that the total sorption behavior of Zn2+ ions on amorphous aluminosilicates with different Al/Si ratios can be represented as the sum of the individual reactions of Zn2+ ions toward the aluminol and silanol groups. The potentiometric results were confirmed by XANES data. It was clearly evident that only the aluminol groups were responsible for surface complexation of Zn2+ ions. An equilibrium constant was calculated for this reaction.  相似文献   
9.
Abstract: The adsorption of gold on iron(III) and aluminum hydroxides from solutions containing Au(III) complexes has been studied as a function of pH and chloride concentration at 30C. Iron(III) hydroxide was more effective in adsorbing gold from solution than aluminum hydroxide. However, both hydroxides controlled the behavior of Au(III) complex with very similar manner. The most effective gold adsorption occurred in aqueous solution with near neutral pH and low Cl concentration. In this solution condition, Au(III) complexes were mainly dissolved as AuCl2(OH)2- and AuCl(OH)3-, and the surface charge for both hydroxides was positive. In addition, the adsorbed Au(III) complexes were spontaneously reduced to elemental gold in spite of the absence of a specific reducing agent.
The results of this study suggest that adsorption and spontaneous reduction of gold complexes on the surface of hydrous metal oxides with positive charge play an important role in gold precipitation in subsurface environment.  相似文献   
10.
Hatched juveniles of Caprella danilevskii (Crustacea: Amphipoda) were exposed to one of two concentrations of tributyltin (TBT) (1.1 and 10.7 ng TBTL(-1)) for 49 d at 20 degrees C. These concentrations are near or below ambient levels in seawater. In both treatments and control, the survival rate was 100% at maturation, and >85% at the end of the experiments. Females reached maturation at 20 (median) to 21.5d at instar VII, and repeated spawning 4-5 times during the experiment. The total number of juveniles per female decreased significantly from 39.5 in the control to 24.5 and 17.5 in 1.1 ng L(-1) and 10.7 ng L(-1) treatments, respectively. An earlier study reported that as the TBT concentration in seawater increased from a 0-10 ng L(-1) regime to a 10-20 ng L(-1) regime, the number of stations where Caprella spp. could be collected decreased along the coast of the Seto Inland Sea, of Japan. Thus, the present study indicates the possibility that the extremely low concentration of TBT measured in Japanese waters after 2000 lead to a reduction in reproductive success of Caprella spp.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号