首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5133篇
  免费   1391篇
  国内免费   107篇
测绘学   159篇
大气科学   157篇
地球物理   2545篇
地质学   2341篇
海洋学   314篇
天文学   685篇
综合类   36篇
自然地理   394篇
  2023年   17篇
  2022年   63篇
  2021年   101篇
  2020年   140篇
  2019年   280篇
  2018年   385篇
  2017年   440篇
  2016年   538篇
  2015年   439篇
  2014年   571篇
  2013年   625篇
  2012年   394篇
  2011年   401篇
  2010年   341篇
  2009年   261篇
  2008年   296篇
  2007年   205篇
  2006年   181篇
  2005年   149篇
  2004年   124篇
  2003年   141篇
  2002年   122篇
  2001年   110篇
  2000年   104篇
  1999年   27篇
  1998年   21篇
  1997年   17篇
  1996年   12篇
  1995年   7篇
  1994年   11篇
  1993年   8篇
  1992年   10篇
  1991年   4篇
  1990年   4篇
  1989年   9篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   3篇
  1981年   6篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1950年   2篇
排序方式: 共有6631条查询结果,搜索用时 437 毫秒
1.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
2.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
3.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
4.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
5.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
6.
Vertical drains are usually installed in subsoil consisting of several layers. Due to the complex nature of the problem, over the past decades, the consolidation properties of multi‐layered ground with vertical drains have been analysed mainly by numerical methods. An analytical solution for consolidation of double‐layered ground with vertical drains under quasi‐equal strain condition is presented in this paper. The main steps for the computation procedure are listed. The convergence of the series solution is discussed. The comparisons between the results obtained by the present analytical method and the existing numerical solutions are described by figures. The orthogonal relation for the system of double‐layered ground with vertical drains is proven. Finally, some consolidation properties of double‐layered ground with vertical drains are analysed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
7.
Abstract— Calculations of the formation of seven types of chondrules in Semarkona from a gas of solar composition were performed with the FACT computer program to predict the chemistries of oxides (including silicates), developed by the authors and their colleagues. The constrained equilibrium theory was used in the calculations with two nucleation constraints suggested by nucleation theory. The first constraint was the blocking of Fe and other metal gaseous atoms from condensing to form solids or liquids because of very high surface free energies and high surface tensions of the solid and liquid metals, respectively. The second constraint was the blocking of the condensation of solids and the formation of metastable liquid oxides (including silicates) well below their liquidus temperatures. Our laboratory experiments suggested subcooling of type IIA chondrule compositions of 400 degrees or more below the liquidus temperature. The blocking of iron leads to a supersaturation of Fe atoms, so that the partial pressure of Fe (pFe) is larger than the partial pressure at equilibrium (pFe(eq)). The supersaturation ratio S = pFe/pFe(eq) becomes larger than 1 and increases rapidly with a decrease in temperature. This drives the reaction Fe + H2O ? H2 + FeO to the right. With S = 100, the activity of FeO in the liquid droplet is 100 times as large as the value at equilibrium. The FeO activities are a function of temperature and provide relative average temperatures of the crystallization of chondrules. Our calculations for the LL3.0 chondrite Semarkona and our study of some non‐equilibrium effects lead to accurate representations of the compositions of chondrules of types IA, IAB, IB, IIA, IIAB, IIB, and CC. Our concepts readily explain both the variety of FeO concentrations in the different chondrule types and the entire process of chondrule formation. Our theory is unified and could possibly explain the formation of chondrules in all chondritic meteorites as well as provide a simple explanation for the complex chemistries of chondrites, and especially for type 3 chondrites.  相似文献   
8.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
The cosmological, astrophysical, and nucleocosmochronological methods for estimating the age of the universe and the corresponding uncertainties are comparatively studied in the present paper. We are led to the conclusion that the new measurements of cosmological parameters, and the recent estimates of the age of globular clusters have led to the gradual disappearance of the age problem from the arena of modern cosmology.  相似文献   
10.
This paper deals with the formation processes and the palaeoenvironmental significance of relict slope deposits located on the uppermost part of the north Portugal mountains. For this purpose, seven key sites representative of the different lithofacies have been selected and analysed in detail. The data show that three main dynamic processes are responsible for the emplacement of regional fossil slope deposits: runoff, debris flows and dry grain flows. The ubiquity of these processes and the lack of frost‐related features or landforms do not support the existence of severe Pleistocene climates in this part of the lberian Peninsula as postulated by previous work. Pedological data gathered at one of the study sites show that a subalpine environment was probably present at 700–800 m altitude between 29 and 14 kyr. Using data from the Pyrenees Mountains, a 6.5 to 12°C depression in mean annual temperature has been tentatively postulated for this Pleniglacial period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号