首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   8篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1975年   1篇
排序方式: 共有8条查询结果,搜索用时 203 毫秒
1
1.
Lithium is an important geochemical tracer for fluids or solids. However, because the electron microprobe cannot detect Li, variations of Li abundance at the micrometric scale are most often estimated from bulk analyses. In this study, the Li intense emission line at 670.706 nm in optical emission spectroscopy was used to perfect the analysis of Li at the micrometric scale by means of laser-induced breakdown spectroscopy (LIBS). To estimate lithium content for different geological materials, LIBS calibration of the emission line at 670.706 nm was achieved by use of synthetic glasses and natural minerals. The detection limit for this method is ∼5 ppm Li. Three applications to geological materials show the potential of LIBS for lithium determination, namely for Li-bearing minerals, melt inclusions, quartz, and associated fluid inclusions.For spodumene and petalite from granite pegmatite dikes (Portugal), the Li2O concentrations are 7.6 ± 1.6 wt% and 6.3 ± 1.3 wt%, respectively, by use of LIBS. These values agree with ion microprobe analyses, bulk analyses, or both. For eucryptite crystals, the Li concentrations are scattered because grain size is smaller than the LIBS spatial resolution (6 to 8 μm). Lithium concentrations of melt inclusions from the Streltsovka U deposit (Siberia) are in the range of 2 to 6.2 wt% (Li2O) for Li-rich daughter minerals. Lithium estimations on silicate glasses display values between 90 and 400 ppm.Lithium was also analyzed as a trace element in quartz. Transverse profiles were performed in hydrothermal barren quartz veins from the Spanish Central System (Sierra de Guadarrama). The highest Li concentrations (250 to 370 ppm) were found in specific growth bands in conjunction with the observed variation in optical cathodoluminescence intensity. Considering the fluid inclusion analysis, the source of fluid responsible to the Li enrichment in quartz is probably high-salinity fluids derived from sedimentary basins.  相似文献   
2.
The Panasqueira W-Sn deposit is the largest quartz-vein type deposit of the Iberian Peninsula and the most important wolframite deposit in Western Europe. The ore-veins are almost exclusively sub-horizontal. Besides ore-bearing sub-horizontal veins, the Panasqueira mine also contains barren quartz veins. There are essentially two generations of barren quartz: quartz, contemporaneous with the earliest regional metamorphism (QI), and recrystallized quartz, contemporaneous with the thermal metamorphism related to the granite intrusion (QII). Fluid inclusion studies (microthermometry and Raman) were undertaken in order to distinguish fluids contemporaneous with the barren quartz from those contemporaneous with the ore-bearing quartz (QIII). Fluid inclusion data indicate that the barren and ore-bearing quartz fluids are dominantly aqueous (93 to 98 mol% H2O), with a nearly constant bulk salinity (8 to 12 wt% eq. NaCl), with the quantity of volatile component (determined by Raman spectrometry) higher in QIII, but never greater than 5 mol%. However, the CO2/CH4 + N2 ratio is different for each type of quartz. Volatiles are dominated by CH4 (10 to 96 mol% ZCH4 and/or N2 (3 to 87 mol% ZN2) in the barren quartz and by CO2 (60 to 73 mol% ZCO2) in ore-bearing quartz. The bulk chemical composition of the fluids in QIII is comparable to that found commonly in hydrothermal fluids associated with wolframite mineralization, where Na>K>Ca and HCO3>Cl>SO4. A dispersion in TH (226 to 350 °C) found in QIII, together with a variation in the degree of filling (0.5 to 0.7) and with the consequent variation of fluid densities (0.70 to 0.79), may result from changes in the fluid pressure regime below lithostatic pressure, suggesting vein filling related to tectonic events.  相似文献   
3.
Raman spectroscopy was used to analyze quantitatively water in silicate glasses and melt inclusions and to monitor H2O–OH speciation. Calibration is based on synthetic glasses with various water contents (0.02–7.67% H2O); water determination and OH–H2O differentiation on the area of the Si–O broad band at 468 cm–1 and the asymmetric O–H band at 3,550 cm–1. Each Raman spectrum has been decomposed into four Gaussian + Lorentzian components centered at 3,330, 3,458, 3,560, and 3,626 cm–1 using the Levenberg–Marquardt algorithm. These components are interpreted to be two different types of H2O molecule sites. The influence of the temperature on the loss of water is more important for molecular water than for the hydroxyl groups. The H2O–OH partition confirms the typical evolution of water speciation in rhyolitic glasses as a function of the bulk water content. Method limitations have been studied for the application to natural melt inclusions.Editorial responsibility: T.L Grove  相似文献   
4.
Contrasting evolution of fluorine- and boron-rich tin systems   总被引:8,自引:0,他引:8  
Individual Sn provinces or regions within provinces are sometimes enriched in fluorine or boron, giving rise to fluorine-rich and boron-rich environments. The structural styles of mineralisation within these environments are similar except that hydrothermal intrusive breccia pipes are more common in boron-rich environments and apogranite/massive greisen systems are more common in fluorine-rich environments. The increased solubility of H2O in B-bearing magmas compared to F-bearing magmas may play a role in the structural evolution of the mineralising systems. The greater mechanical energy produced during crystallisation of B-rich magmas provides a mechanism for breccia pipe and stockwork formation, while the more passive crystallisation of F-rich magmas often results in the formation of disseminated mineralisation. The partitioning of boron toward the aqueous fluid phase and the enhanced solubility of silica in the fluid phase frequently results in tourmalinisation and silicification of the wall-rocks in B-rich environments. In contrast, feldspathic and sericitic alterations usually predominate in F-rich environments.  相似文献   
5.
6.
7.
The fluid inclusions occurring in quartz of cassiterite-bearing quartz veins from two localities of Southern Brittany have been studied (microthermometry and chemical analysis). In both localities, two sorts of fluids have been recognized: 1. Early fluids, related to the precipitation of cassiterite. Those fluids are closed to a chloride-bearing aqueous solution, with very little CO2 and hydrocarbons. The salinity is rather low (6 to 9 wt % eq. NaCl). The inclusions homogenize between 150 à 300 °C. The K/Na atomic ratio is about 0,1. From these data and the mineralogical associations (muscovite + kaolinite), the physical and chemical properties of the solution at the time of cassiterite crystallization have been calculated: temperature 350°C, pressure 800 bars; molalities of NaCl, KCl and HCl are, respectively about 1, 0.1 and 0.01 (pH at 25 °C, 1 bar 2, lower than 3 in any case). 2. Late fluids, related to an important kaolinization. They are generally colder, and have a either lower or higher salinity, than the early fluids.  相似文献   
8.
The Beauvoir albite–lepidolite–topaz granite is a small, highly evolved intrusion, rich in Li, Rb, F, but also paradoxically rich (or enriched) in Sr (up to 755 ppm) and Ca, a provocative chemical contradiction. Goyazite, an Sr-rich phosphate, is ubiquitous as small secondary grains growing exclusively in albite. Ion microprobe spot analyses reveal variable, higher than whole-rock 87Sr/86Sr ratios at the crystal scale. These data suggest exchanges between the granite and the surrounding micaschists. A two-stage scenario is proposed: (1) Sr, mainly common, was introduced from the micaschists into the Sr-poor granite at the vanishing time of crystallization, redistributed into zones of preferential permeability and stored in recrystallized P-rich albite, (2) the low-temperature destabilization of albite and lepidolite (host for radiogenic Sr produced by in-situ radioactive 87Rb decay), during the Oligocene extensive period, provoked the consequent mixture of both Sr in variable proportions, resulting in the precipitation of goyazite. These results highlight the strong disturbance affecting the Rb–Sr granite system which can be visualized in secondary minerals, such as these low-temperature, micron-size Sr-rich phosphates.Editorial responsibility: J. Touret  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号