首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   1篇
地球物理   7篇
地质学   3篇
海洋学   2篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  1977年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The determination of spatial dependency of regionalized variable (ReV) is important in engineering studies. Regional dependency function that leads to calculation of weighting coefficients is required in order to make regional or point‐wise estimations. After obtaining this dependency function, it is possible to complete missing records in the time series and locate new measurement station. Also determination of regional dependency function is also useful to understand the regional variation of ReV. Point Cumulative Semi‐Variogram (PCSV) is another methodology to understand the regional dependency of ReV related to the magnitude and the location. However, this methodology is not useful to determine the weighting coefficient, which is required to make regional and point‐wise estimations. However, in Point Semi‐Variogram (PSV) proposed here, weighting coefficient depends on both magnitude and location. Although the regional dependency function has a fluctuating structure in PSV approach, this function gradually increases with distance in PCSV. The study area is selected in Mississippi river basin with 38 streamflow stations used for PCSV application before. It is aimed to compare two different geostatistical models for the same data set. PSV method has an ability to determine the value of variable along with optimum number of neighbour stations and influence radius. PSV and slope PSV approaches are compared with the PCSV. It was shown that slope slope point semi‐variogram (SPSV) approaches had relative error below 5%, and PSV and PCSV methods revealed relative errors below 10%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
2.
3.
Abdüsselam Altunkaynak   《Ocean Engineering》2008,35(11-12):1245-1251
Prediction of wave parameters is very important for planning, designing and operation of ocean structures. Accurate estimation of these parameters provides engineers to construct more economical and reliable ocean structures such as harbors, breakwaters, oil production platforms and ocean wave energy converters. For this reason, optimum operation of these plants has become a must. Various methods have been introduced to determine the relation among wind speed previous and current wave parameters. Method proposed in this paper consists of genetic algorithms and Kalman filters which is called as Geno-Kalman filtering. It is based on adaptive calculation to reach the solution. Also a comparison has been made between perceptron Kalman filtering and Geno-Kalman filtering techniques. The application of Geno-Kalman filtering was performed for station 46002 which located in the Coos Bay at Oregon, USA. It is observed that the Geno-Kalman filtering methodology has smaller absolute, mean-square and relative errors than perceptron Kalman filtering. Also coefficient of efficiency value which was used to evaluate results between observed and estimated is higher at Geno-Kalman filtering than perceptron Kalman filtering.  相似文献   
4.
Simple methods for calculating well losses are important for well design and optimization of groundwater source operation. Well losses arise from both laminar flow within the aquifer and turbulent flow within the well, and are often ignored in theoretical aquifer test analysis. The Jacob ( 1947 ) and Rorabaugh ( 1953 ) techniques for predicting well losses are widely used in the literature; however, inherent in these techniques are the assumptions of linearity, normality and homoscedascity. In the Rorabaugh technique, prior knowledge, or prediction of, the parameters A, C and n is required for calculation of well losses. Unfortunately, as of yet, no method for adequately obtaining these parameters without experimental data and linear regression exist. For these reasons, the Rorabaugh methodology has some practical and realistic limitations. In this paper, a fuzzy logic approach is employed in the calculation of well losses. An advantage of the fuzzy logic approach is that it does not make any assumptions about the form of the well loss functionality and does not require initial estimates for the calculation of well losses. Results show that the fuzzy model is a practical alternative to the Rorabaugh technique, producing lower errors (mean absolute error, mean square error and root mean square error) relative to observed data, for the case presented, comparatively to the Rorabaugh model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   
6.
Snow temperature is a major component of many physical processes in a snowpack. The temperature and the change in temperature across a layer have a dominant effect on physical properties of snow grains as well as its hardness, strength, and failure resistance. In this study, temperature and snow cover thickness were measured during the snow season of 2007–2008 in 11 elevation classes and in three different sampling locations, one in an open area and two under different forest canopy covers for each class along Kartalkaya road, Bolu. Each sampling site was visited 44 times to collect data including snow depth, snow surface temperature, ground temperature, and temperature within snowpack at 20‐cm intervals. Seven different models are developed to determine snowpack temperature variations under forest canopy covers and in an open area with different leaf area index values. All models were performed using a multilayer perceptron (MP) method for the Bolu–Kartalkaya area, Turkey. MP approach constitutes a standard form of neural network modeling and can modify two‐layer linear perceptron methods using three and more layers. The ability of MP is to handle complex nonlinear interactions, which ease the natural process of modeling. This method can overcome complex computations using neuron networks, and they can easily nonlinearly link input and output variables. The predictive errors are determined on the basis of mean absolute error and mean square error criteria. The Nash–Sutcliffe sufficiency score showing compliance between observed and predicted values is also calculated. According to the mean absolute error, the mean square error, and the Nash–Sutcliffe sufficiency score criteria, the predictive errors are within reasonable error intervals, justifying the use of the developed MP models for engineering applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
A. Altunkaynak  Z. Şen 《水文研究》2011,25(11):1778-1783
Darcian flow law in aquifers assumes that the aquifer hydraulic conductivity is constant and the groundwater movement is due only to the piezometric level changes through hydraulic gradient. In practice, after the well development the aquifer just around the well has comparatively larger hydraulic conductivity and gradient. Patchy aquifer solutions in the literature consider sudden hydraulic conductivity changes with distance for the steady state flow. The change of transmissivity is demonstrated by the application of slope‐matching procedure to actual field data. It is the main purpose of this paper to derive simple analytical expressions for aquifer parameter evaluations with steadily decreasing hydraulic conductivity around the well. Spatial nonlinear hydraulic conductivity changes around a large‐diameter well within the depression cone of a confined aquifer are considered as exponentially decreasing functions of the radial distance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
9.
In this paper, a technique is proposed in order to study triple time series. It combines the variable of interest, sulfur dioxide (SO2) with two related meteorological variables. Hence, three variables measured at the same time points are jointly analyzed. Instead of using classical multiple time series analysis, it is suggested to consider the measurements of the two meteorological variables as coordinates of a two-dimensional space and the simultaneous observation of the third variable (associated SO2 concentrations) at each pair of coordinates. Subsequently, well-known optimum interpolation is used for predicting the SO2 concentrations on the basis of six meteorological variables. All the variables of the study are measured at the same times (all days in 2000) around the city of Istanbul, Turkey. The triple diagrams, in the form of contour maps, help to answer various questions concerning the SO2 concentration variability with respect to meteorological variables. The same diagrams also provide a basis for the prediction of SO2 concentrations. It is shown that the relative prediction error is less than 10%, which is acceptable for the practical studies.  相似文献   
10.
In practice, rainfall–runoff relationships are achieved through a simply defined runoff coefficient concept that is widely used in many engineering hydrological designs in urban and rural areas. The simplicity of the method, with the sole requirement of runoff coefficient assessment, is the main attractiveness, in addition to its successful prediction of average runoff rates for a given rainfall record. Unfortunately, in the classical regression approach of the rainfall–runoff relationship, internal variabilities are not taken into consideration explicitly. The runoff coefficient is considered a constant value, and it is used without distinction of antecedent conditions for the calculation of runoff from the rainfall record. In this paper, various other uncertainty embedded versions of the runoff coefficient, and hence rainfall–runoff formulation, are presented in terms of statistics, probability, perturbation and, finally, fuzzy system modelling. It is concluded that the fuzzy logic approach yields the least relative error among the various alternative runoff calculation methods; therefore, it is recommended for use in future studies. The application of various alternatives is presented for two monthly rainfall‐runoff records around Istanbul, Turkey. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号