首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   5篇
  国内免费   4篇
测绘学   14篇
大气科学   13篇
地球物理   30篇
地质学   101篇
海洋学   9篇
天文学   24篇
综合类   4篇
自然地理   7篇
  2022年   7篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   25篇
  2017年   12篇
  2016年   4篇
  2015年   10篇
  2014年   12篇
  2013年   13篇
  2012年   10篇
  2011年   25篇
  2010年   15篇
  2009年   17篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1979年   2篇
  1976年   2篇
  1970年   1篇
排序方式: 共有202条查询结果,搜索用时 187 毫秒
1.
Computational Fluid Dynamic (CFD) based on Reynolds Averaged Navier–Stokes equation is used for determining the transverse hydrodynamic damping force and moment coefficients that are needed in the maneuverability study of marine vehicles. Computations are performed for two geometrical shapes representing typical AUVs presently in use. Results are compared with available data on similar geometries and from some of the available semi-empirical relations. It is found that the CFD predictions compares reasonable well with these results. In particular, the CFD predictions of forces and moments are found to be nonlinear with respect to the transverse velocity, and therefore both linear and nonlinear coefficients can be derived. A discussion on the sources of the component forces reveal that the total force and moment variations should in fact be nonlinear.  相似文献   
2.
An analysis of mechanisms for submesoscale vertical motion at ocean fronts   总被引:8,自引:1,他引:8  
We analyze model simulations of a wind-forced upper ocean front to understand the generation of near-surface submesoscale, O(1 km), structures with intense vertical motion. The largest vertical velocities are in the downward direction; their maxima are situated at approximately 25 m depth and magnitudes exceed 1 mm/s or 100 m/day. They are correlated with high rates of lateral strain, large relative vorticity and the loss of geostrophic balance. We examine several mechanisms for the formation of submesoscale structure and vertical velocity in the upper ocean. These include: (i) frontogenesis, (ii) frictional effects at fronts, (iii) mixed layer instabilities, (iv) ageostrophic anticyclonic instability, and (v) nonlinear Ekman effects. We assess the role of these mechanisms in generating vertical motion within the nonlinear, three-dimensionally evolving flow field of the nonhydrostatic model. We find that the strong submesoscale down-welling in the model is explained by nonlinear Ekman pumping and is also consistent with the potential vorticity arguments that analogize down-front winds to buoyancy-forcing. Conditions also support the formation of ageostrophic anticyclonic instabilities, but the contribution of these is difficult to assess because the decomposition of the flow into balanced and unbalanced components via semigeostrophic analysis breaks down at O(1) Rossby numbers. Mixed layer instabilities do not dominate the structure, but shear and frontogenesis contribute to the relative vorticity and strain fields that generate ageostrophy.  相似文献   
3.
The paper records evidences of neotectonic activities in the Gangotri glacier valley that are found to be responsible for the present-day geomorphic set-up of the area since the last phase of major glaciation. Geomorphological features indicate the presence of a large glacier in the valley in the geological past. Prominent planar structures present in the rocks were later on modified into sets of normal faults in the present-day Himalayan tectonic set-up giving rise to graben structures. The block nearest the snout is traversed by the NW-SE trending Gaumukh fault. A number of terraces mark the entrenchment of Bhagirathi River in this part. The contrasting drainage morphometric parameters of two sides of the valley and asymmetric recessional patterns of the tributary glaciers further document movement along the fault. The distribution and orientation of debris fans also seem to be controlled by neotectonic activity. The neotectonic activity that followed the process of deglaciation has brought the glacially carved, wide U- shaped valley in contact with the present-day fluvially incised narrow and relatively deep valley. The wider segments have become sites of active deposition of glacially eroded debris. The low gradient and excessive filling has resulted in the river attaining a braided nature in these segments.  相似文献   
4.
5.
Every organism has different potential to accumulate NO3 ?from the environment. Nitrate reduction processes are perhaps most significant in maintaining water quality by alteration of nitrate to nitrite. A comparative study between the nitrate reductase NR activity of green and blue green algae in presence of heavy metals is being conducted to present a situation where nitrate reductase process may be affected in presence of heavy metals. Metals interacted negatively with the nitrate reductase activity of a blue green alga, Anacystis nidulans and green algae, Chlorella vulgaris in both free and immobilized state. The activity was more repressed in C. vulgaris in presence of Ni compared to Zn and Cd. However, Cd was more toxic to NR activity in A. nidulans (free state). Metal dependent variation between free and immobilized cells were found to be significant (P< 0.01) however, the concentration dependent pattern in the activity between free and immobilized state was non significant in both the test organisms. C.vulgaris is more efficient in conversion of nitrate to nitrite compared to A.nidulans in presence of heavy metals.  相似文献   
6.
7.
8.
9.
Haryana plain is the drainage divide between the Ganga plain in the east and the Indus plain in the west. Being a part of the Himalayan foreland, its geomorphology, sedimentation processes, and tectonism are broadly controlled by the Himalayan tectonics. Soil and geomorphological mapping in Haryana plain bring out geomorphic features such as paleochannels, various active drainage patterns, and landforms such as old fluvial plains, floodplains, piedmonts, pediments, terminal fans, and eolian plains. Based on the degree of soil development, and Optical stimulated luminescence (OSL) ages, the soil-geomorphic units were grouped into six members (QIMS-I to VI) (Quaternary Indus Morphostratigraphic Sequence) of a morphostratigraphic sequence: QIMS-VI 9.86–5.38 Ka, QIMS-V 5.38–4.45 Ka, QIMS-IV 4.45–3.60 Ka, QIMS-III 3.60–2.91 Ka, QIMS-II <?2.91–1.52 Ka, and QIMS-I <?1.52 Ka. OSL chronology of different geomorphic features suggests six episodes of tectono-geomorphic evolution in the region since 10 Ka. Neotectonic features such as nine faults, two lineaments, and five fault-bounded tectonic blocks have been identified. Independent tilting and sagging of the blocks in response to neotectonics have resulted in modification of landforms, depositional processes, and hydro-geomorphology of the region. Major rivers like the Yamuna, the Ghaggar, and the Sutlej show different episodes of shifting of their courses. Lineament controlled few extinct channels have been recorded between 20 and 25 m depth below the surface in the ground-penetrating radar (GPR) profiles. These buried channels are aligned along the paleo-course of the Lost Saraswati River interpreted from the existing literature and hence are considered as the course of the lost river. Seven terminal fans have been formed on the downthrown blocks of the associated faults. The Markanda Terminal Fan, the first of such features described, is indeed a splay terminal fan and was formed by a splay distributary system of the Markanda River. Association of three terminal fans of different ages with the Karnal fault indicates the segment-wise development of the fault from west to east. Also, comparison with other such studies in the Ganga plain to further east suggests that the terminal fans formed by streams with distributary drainage pattern occur only in semiarid regions as in the present area and thus are indicators of semiarid climate/paleoclimate. Though the whole region is tectonically active, the region between the Rohtak fault and Hisar fault is most active at present signified by the concentration of earthquake epicenters.  相似文献   
10.
The Jutulsessen area, can provide a vital clue to the supercontinent assembly of Gondwana Land as it is situated within the Circum East Antarctic Mobile Belt just east of the Penksockett rift marking the divide between the central Dronning Maud Land from the Western Dronning Maud Land. This landmass is dominated by migmatitic quartzo-feldspathic rocks intruded by syn to post-tectonic granites. The work highlights the data from western part cDML area with a view to arrive at a more comprehensive model for the cDML and subsequently to the super continent assembly. Granitic and migmatitic gneisses comprising of amphibolitic and biotite rich enclaves. The gneisses show variations from quartzo-felspathic gneiss to amphibolitic gneiss. The area has witnessed complex geological history involving at different deformational episodes with concomitant metamorphism. The pervasive dominant foliation trends NW-SE with shallow to medium dips towards SW. In the Stabben area, a nonfoliated intrusive syenite-gabbro pluton limits the gneissic exposures. Compositionally, the orthogneisses plot in the monzogranitegranodiorite field where as the mafic dykes/enclaves plot in the basalt-andesite-rhyodacite field. The bulk geochemical characteristics suggest significant crustal contamination. Garnet-biotite Fe-Mg exchange thermometry gives peak metamorphic temperature of 483° C for the gneisses and 628° C for the dioritic enclave within gneisses. A peak metamorphic grade of upper amphibolite to granulite facies is deduced from the mineral assemblages. Widespread anatexis has led to extensive occurrence of migmatites in the area. Recent geochronological studies assign an age of 1170 Ma to 970 Ma for the migmatites/gneisses and an emplacement age of 501 Ma for the Stabben gabbro and syenite. The discriminant plots of the Jutulsessen rocks indicate diverse origin ranging from pre-plate collision to post-collision orogenic tectonic setting. The mafic enclaves/dykes show ocean island arc to MORB affinities. Voluminous addition of juvenile crust during the Pan-African orogeny strongly overprints earlier structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号