首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   5篇
  2016年   1篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
During geothermal reservoir development, drilling deep boreholes turns out to be extremely expensive and risky. Thus, it is of great importance to work out the details of suitable borehole locations in advance. Here, given a set of existing boreholes, we demonstrate how a sophisticated numerical technique called optimal experimental design helps to find a location of an additional exploratory borehole that reduces risk and, ultimately, saves cost. More precisely, the approach minimizes the uncertainty when deducing the effective permeability of a buried reservoir layer from a temperature profile measured in this exploratory borehole. In this paper, we (1) outline the mathematical formulation in terms of an optimization problem, (2) describe the numerical implementation involving various software components, and (3) apply the method to a 3D numerical simulation model representing a real geothermal reservoir in northern Italy. Our results show that optimal experimental design is conceptually and computationally feasible for industrial-scale applications. For the particular reservoir and the estimation of permeability from temperature, the optimal location of the additional borehole coincides with regions of high flow rates and large deviations from the mean temperature of the reservoir layer in question. Finally, the presentation shows that, methodologically, the optimization method can be generalized from estimating permeability to finding any other reservoir properties.  相似文献   
2.
Hydraulic fracturing is a method used for the production of unconventional gas resources. Huge amounts of so-called fracturing fluid (10,000–20,000 m3) are injected into a gas reservoir to create fractures in solid rock formations, upon which mobilised methane fills the pore space and the fracturing fluid is withdrawn. Hydraulic fracturing may pose a threat to groundwater resources if fracturing fluid or brine can migrate through fault zones into shallow aquifers. Diffuse methane emissions from the gas reservoir may not only contaminate shallow groundwater aquifers, but also escape into the atmosphere where methane acts as a greenhouse gas. The working group “Risks in the Geological System” as part of ExxonMobil’s hydrofracking dialogue and information dissemination processes was tasked with the assessment of possible hazards posed by migrating fluids as a result of hydraulic fracturing activities. In this work, several flow paths for fracturing fluid, brine and methane are identified and scenarios are set up to qualitatively estimate under what circumstances these fluids would leak into shallower layers. The parametrisation for potential hydraulic fracturing sites in North Rhine-Westphalia and Lower Saxony (both in Germany) is derived from literature using upper and lower bounds of hydraulic parameters. The results show that a significant fluid migration is only possible if a combination of several conservative assumptions is met by a scenario.  相似文献   
3.
The concentration of greenhouse gases – particularly carbon dioxide (CO2) – in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. Biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity by blocking leakage pathways. The biofilm could also protect well cement from corrosion by CO2-rich brine.  相似文献   
4.
5.
The efficiency and sustainability of carbon dioxide (CO2) storage in deep geological formations crucially depends on the integrity of the overlying cap-rocks. Existing oil and gas wells, which penetrate the formations, are potential leakage pathways. This problem has been discussed in the literature, and a number of investigations using semi-analytical mathematical approaches have been carried out by other authors to quantify leakage rates. The semi-analytical results are based on a number of simplifying assumptions. Thus, it is of great interest to assess the influence of these assumptions. We use a numerical model to compare the results with those of the semi-analytical model. Then we ease the simplifying restrictions and include more complex thermodynamic processes including sub- and supercritical fluid properties of CO2 and non-isothermal as well as compositional effects. The aim is to set up problem-oriented benchmark examples that allow a comparison of different modeling approaches to the problem of CO2 leakage.  相似文献   
6.
Hydraulic fracturing of unconventional gas reservoirs rapidly developed especially in the USA to an industrial scale during the last decade. Potential adverse effects such as the deterioration of the quality of exploitable groundwater resources, areal footprints, or even the climate impact were not assessed. Because hydraulic fracturing has already been practised for a long time also in conventional reservoirs, the expansion into the unconventional domain was considered to be just a minor but not a technological step, with potential environmental risks. Thus, safety and environmental protection regulations were not critically developed or refined. Consequently, virtually no baseline conditions were documented before on-site applications as proof of evidence for the net effect of environmental impacts. Not only growing concerns in the general public, but also in the administrations in Germany promoted the commissioning of several expert opinions, evaluating safety, potential risks, and footprints of the technology in focus. The first two publications of the workgroup “Risks in the Geological System” of the independent “Information and Dialogue process on hydraulic fracturing” (commissioned by ExxonMobil Production Deutschland GmbH) comprises the strategy and approaches to identify and assess the potential risks of groundwater contamination of the exploitable groundwater system in the context of hydraulic fracturing operations in the Münsterland cretaceous basin and the Lower Saxony Basin, Germany. While being specific with respect to local geology and the estimation of effective hydraulic parameters, generalized concepts for the contamination risk assessment were developed. The work focuses on barrier effectiveness of different units of the overburden with respect to the migration of fracking fluids and methane, and considers fault zones as potential fluid pathway structures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号