首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
测绘学   1篇
大气科学   4篇
地球物理   2篇
地质学   20篇
天文学   7篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   5篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1998年   2篇
  1981年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
2.
3.
A region of enhanced conductivity at the base of the mantle is modelled by an infinitesimally thin sheet of uniform effective conductance adjacent to the core–mantle boundary. Currents induced in this sheet by the temporally varying magnetic field produced by the geodynamo give rise to a discontinuity in the horizontal components of the poloidal magnetic field on crossing the sheet, while the radial component is continuous across the sheet. Treating the rest of the mantle as an insulator, the horizontal components of the poloidal magnetic field and their secular variation at the top of the core are determined from geomagnetic field, secular variation and secular acceleration models. It is seen that for an assumed effective conductance of the sheet of 108  S, which may be not unrealistic, the changes produced in the horizontal components of the poloidal field at the top of the core are usually ≤10 per cent, but corrections to the secular variation in these components at the top of the core are typically 40 per cent, which is greater than the differences that exist between different secular variation models for the same epoch. Given the assumption that all the conductivity of the mantle is concentrated into a thin shell, the present method is not restricted to a weakly conducting mantle. Results obtained are compared with perturbation solutions.  相似文献   
4.
5.
A supervised principal component regression (SPCR) technique has been employed on general circulation model (GCM) products for developing a monthly scale deterministic forecast of summer monsoon rainfall (June–July–August–September) for different homogeneous zones and India as a whole. The time series of the monthly observed rainfall as the predictand variable has been used from India Meteorological Department gridded (1°?×?1°) rainfall data. Lead 0 (forecast initialized in the same month) monthly products from GCMs are used as predictors. The sources of these GCMs are International Research Institute for Climate and Society, Columbia University, National Center for Environmental Prediction, and Japan Agency for Marine Earth Science and Technology. The performance of SPCR technique is judged against simple ensemble mean of GCMs (EM) and it is found that over almost all the zones the SPCR model gives better skill than EM in June, August, and September months of monsoon. The SPCR technique is able to capture the year to year observed rainfall variability in terms of sign as well as the magnitude. The independent forecasts of 2007 and 2008 are also analyzed for different monsoon months (Jun–Sep) in homogeneous zones and country. Here, 1982–2006 have been considered as development year or training period. Results of the study suggest that the SPCR model is able to catch the observational rainfall over India as a whole in June, August, and September in 2007 and June, July, and August in 2008.  相似文献   
6.
The West Coast belt, consisting of nearly 60 thermal springs, is one of the most diversified geothermal fields in India. The present work describes the multi-isotopic (O, H, C, S, B and Sr) characterization of thermal waters carried out in the Tural-Rajwadi geothermal field, situated in southern sector of the west coast geothermal area. The aim of this study is to delineate the origin of thermal water as well as to ascertain the sources of carbon, sulphur, boron and strontium dissolved in those thermal springs. The stable isotopes (δ2H and δ18O) and tritium data indicate that these thermal springs are not recently recharged rain water rather, it contains very old component of water. Oxygen-18 shift is observed due to rock-water interaction over a long period of time. Carbon isotopic composition of DIC points out to the silicate weathering with soil CO2 coming from C3 type of plants whereas δ34S of dissolved sulphate confirms the marine origin of sulphate. This marine signature is basically derived from paleo-seawater possibly entrapped within the flows. Boron isotopic data reveals that both the seawater and rock dissolution are the sources of boron in the thermal waters whereas high 87Sr/86Sr ratios (0.7220–0.7512) of the thermal waters conclusively establishes that archean granitic basement is the predominant rock source of strontium, not the Deccan flood basalts. In addition, like strontium, concentrations of lithium, rubidium and caesium are also governed by the rock-water interaction. Thus, the combined use of this multi-isotope technique coupled with trace element concentrations proves to be an effective tool to establish the sources of solutes in the thermal water.  相似文献   
7.
We have tried to determine the flux of the ultraviolet background radiation field from the column density ratios of various ions in several absorption systems observed in the spectra of QSOs. We find that in most cases the flux is considerably higher than what has been estimated to be contributed by the AGNs. The excess flux could originate locally in hot stars. In a few cases we have been able to show that such galactic flux can only contribute a part of the total required flux. The results suggest that the background gets a significant contribution from an unseen QSO population.  相似文献   
8.
India recognizes the strategic importance for developing shale gas resources like other countries in the world. Shale gas reservoirs are known to be difficult for extracting gas in comparison to conventional reservoirs. Recently, due to high prices of gas, rising demand and enhancement in recovery technologies has attracted the Indian energy industries to explore the shale gas resource. Coal and lignite are the prime source of energy in India and these resources are well explored, while shale is ignored, despite it being associated with coal and lignite bearing formations. The paper presents reservoir characteristics of shale horizons in Barren Measures and Barakar formations of north and south Karanpura coalfields. Shale core samples were collected from exploratory boreholes in air tight canisters. In-situ gas content and adsorption capacities ascertained to be 0.51–1.69 m3/t and 3.90–5.82 m3/trespectively. Desorbed gas derived from canisters contains CH4, C2H6, C3H8, CO2, N2 and O2 and varies from 76.19–82.63, 0.38–0.76, 0.10–0.50, 8.65–12.34, 9.89–19.34 and 0.56–2.24 vol. % respectively. The permeability and porosity determined under reservoir simulated confining pressure is varying from 0.41–0.75 mD and 0.89–2.28 % respectively. The plots of Rock Eval S2vs TOC and HI against Calc. VRo% indicates that all shale samples belong to Type III kerogen, which is prone to generate gas. It is evaluated that insitu gas content, sorption capacity, saturation level and low permeability of shale beds are critical parameters for development of shale gas resource in the studied area.  相似文献   
9.
We employ an Artificial Neural Network (ANN) based technique to develop a pipeline for automated segregation of stars from the galaxies to be observed by Tel-Aviv University Ultra-Violet Experiment (TAUVEX). We use synthetic spectra of stars from UVBLUE library and selected International Ultraviolet Explorer (IUE) low-resolution spectra for galaxies in the ultraviolet (UV) region from 1250 to 3220 Å as the training set and IUE low-resolution spectra for both the stars and the galaxies as the test set. All the data sets have been pre-processed to get band integrated fluxes so as to mimic the observations of the TAUVEX UV imager. We also perform the ANN based segregation scheme using the full length spectral features (which will also be useful for the ASTROSAT mission). Our results suggest that, in the case of the non-availability of full spectral features, the limited band integrated features can be used to segregate the two classes of objects; although the band data classification is less accurate than the full spectral data classification.  相似文献   
10.
Landslide susceptibility is the likelihood of a landslide occurrence in an area predicted on the basis of local terrain conditions. Since last few years, researchers have attempted to analyse the probability of landslide occurrences and introduced different methods of landslide susceptibility assessment. The objective of this paper is to assess the landslide susceptibility in parts of the Darjeeling Himalayas using a relatively simple bivariate statistical technique. Seven factor layers with 24 categories, responsible for landslide occurrences in this area, are prepared from Cartosat and Resourcesat — 1 LISS-IV MX data. Each category was given a weight using the Information Value Method. Weighted sum of these values were used to prepare a landslide susceptibility map. The result shows that 8% area was predicted for high, 32% for moderate and remaining 60% for low landslide susceptibility zones. The high value (0.89) of the area under the receiver operating characteristic curve showed the high accuracy of the prediction model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号