首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   11篇
海洋学   1篇
自然地理   1篇
  2017年   3篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
  1998年   1篇
  1993年   1篇
  1968年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The origin and evolution of different ore deposits grouped in the same district are often complex and may involve inheritance from crustal or mantle geochemical anomalies, remobilization of former ore deposits and a polyphase hydrothermal history. Localized in a Proterozoic basement in the Parana state, the Ribeira fluorite district is such an example composed of three deposit types with distinct geological and geochemical characters. Emplaced at different periods from the late Proterozoic to the Cretaceous, they are roughly aligned along a belt nearly 10 km in width and 50 km in length, the southern boundary of which is a transcurrent fault. Two main ore facies are present: (1) microcrystalline ore (< 0.1 mm grains) and (2) macrocrystalline ore (with a grain size of several millimetres). The former results from the replacement of metalimestones or internal karstic sediments and the latter from microcrystalline ore dissolution and pore precipitation or recrystallization. At least two different groups of source rocks can be proposed for the trapped REE in CaF2: (1) fluorite samples associated with the Mato Preto carbonatitic rocks display a slightly negative ɛNd compatible with a mantle source and a REE pattern with the higher ΣREE and La/Yb ratio in the district; (2) other fluorites have a strongly negative ɛNd (− 14 to − 20) which indicates a crustal source. That fluorine and REE have the same source is possible in strata-bound and fracture-filling deposits, but is doubtful at Mato Preto, the only economic fluorite deposit associated with carbonatite rocks in Brazil. This occurrence within a Precambrian fluorite belt suggests that remobilization of a former strata-bound deposit was a more significant metallogenic process than magmatic differentiation. Editorial handling: DR  相似文献   
2.
This study investigates the effect of fine-scale clay drapes on tracer transport. A tracer test was performed in a sandbar deposit consisting of cross-bedded sandy units intercalated with many fine-scale clay drapes. The heterogeneous spatial distribution of the clay drapes causes a spatially variable hydraulic conductivity and sorption coefficient. A fluorescent tracer (sodium naphthionate) was injected in two injection wells and ground water was sampled and analyzed from five pumping wells. To determine (1) whether the fine-scale clay drapes have a significant effect on the measured concentrations and (2) whether application of multiple-point geostatistics can improve interpretation of tracer tests in media with complex geological heterogeneity, this tracer test is analyzed with a local three-dimensional ground-water flow and transport model in which fine-scale sedimentary heterogeneity is modeled using multiple-point geostatistics. To reduce memory needs and calculation time for the multiple-point geostatistical simulation step, this study uses the technique of direct multiple-point geostatistical simulation of edge properties. Instead of simulating pixel values, model cell edge properties indicating the presence of irregularly shaped surfaces are simulated using multiple-point geostatistical simulations. Results of a sensitivity analysis show under which conditions clay drapes have a significant effect on the concentration distribution. Calibration of the model against measured concentrations from the tracer tests reduces the uncertainty on the clay-drape parameters. The calibrated model shows which features of the breakthrough curves can be attributed to the geological heterogeneity of the aquifer and which features are caused by other processes.  相似文献   
3.
The Late Carboniferous to Permian continental successions of the Southern Alps can be subdivided into two main tectono-sedimentary Cycles, separated by a marked unconformity sealing a Middle Permian time gap, generally estimated at over 10 Ma. The lower cycle (1), between the Variscan crystalline basement and the Early Permian, is mainly characterised by fluvio-lacustrine and volcanic deposits of calc-alkaline acidic-to-intermediate composition, which range up to a maximum thickness of more than 2,000 m. The upper cycle (2), which is devoid of volcanics, is mostly dominated through the Mid?–Late Permian by alluvial sedimentation which covered the previous basins and the surrounding highs, giving rise to the subaerial Verrucano Lombardo-Val Gardena (Gröden) red-beds, up to about 800 m thick. The palaeontological record from the terrigenous deposits of both the above cycles consists mainly of macro- and microfloras and tetrapod footprints. The age of the continental deposits is widely discussed because of the poor chronological significance of a large number of fossils which do not allow reliable datings; however, some sections are also controlled by radiometric calibrations. The comparison with some selected continental successions in southern Europe allows to determine their evolution and set up correlations. A marked stratigraphic gap shows everywhere between the above-mentioned Cycles 1 and 2. As in the Southern Alps, the gap reaches the greatest extent during the Mid-Permian, near the Illawarra Reversal geomagnetic event (265 Ma). In western Europe, however, such as in Provence and Sardinia, the discussed gap persists upwardly to Late Permian and Early Triassic or slightly younger times, i.e. to the onset of the “Alpine sedimentary Cycle”, even though in northeastern Spain (Iberian Ranges, Balearic Islands) this gap results clearly interrupted by late Guadalupian–Lopingian deposits. The above two major tectonosedimentary cycles reflect, in our view, two main geodynamic events that affected the southern Europe after the Variscan orogenesis: the Late Carboniferous–Early Permian transformation of the Gondwana–Eurasia collisional margin into a diffuse dextral transform margin and the Middle–Late Permian opening of the Neotethys Ocean, with the onset of a generalised extensional tectonic regime and the progressive westward marine ingression.  相似文献   
4.
The Early Jurassic dolomitized carbonates in the Venetian Alp, represent a surface analogue of the hydrocarbon exploration targets in Adriatic offshore and Po Plain, Italy. Dolomitization affected the carbonate platform of Monte Zugna Formation (Lower Jurassic) and the Neptunian dikes breccia in the pelagic Maiolica Formation (Uppermost Jurassic–Lower Cretaceous) improving the poro-perm characteristics. Petrography, stable isotope, strontium isotope ratio, trace element and fluid inclusion analyses were carried out on samples from the Monte Grappa Anticline, which is the direct analogue for subsurface. The petrographic analyses showed a first pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3, DS). The same, quite wide range of oxygen isotope (?9 to ?2‰ V-PDB) is observed in all dolomite types. The δ13C range is in the positive field of marine derived carbonate (from +0.5 to +3.2‰ PDB). The trace element analysis showed a slight enrichment in Fe and Mn contents in the Monte Zugna dolostones with respect the original limestone. The same dolomite precipitation temperature (up to 105 °C Th) was observed in the replacement and cement dolomites, suggesting a unique dolomitization event. This temperature, largely higher than the maximum burial temperature (about 50 °C), supports a hydrothermal origin of the dolomitizing fluids, which had a seawater to brackish composition. The data collected suggest a hydrothermal dolomitization occurring during to the South Alpine thrusting according to the “squeegee model”. The interpretation is consistent with the dolomitization model proposed for similar Jurassic successions in the Central Southern Alps. This study indicates that the deformed foreland and thrust fold belts carbonates in Po Plain and Adriatic offshore are suitable to be dolomitized, and therefore reflect an efficient hydrocarbon exploration play.  相似文献   
5.
Calcite veins and related sulphate–sulphide mineralisation are common in the Buda Hills. Also, abundant hypogenic caves are found along fractures filled with these minerals pointing to the fact that young cave-forming fluids migrated along the same fractures as the older mineralising fluids did. The studied vein-filling paragenesis consists of calcite, barite, fluorite and sulphides. The strike of fractures is consistent—NNW–SSE—concluding a latest Early Miocene maximum age for the formation of fracture-filling minerals. Calcite crystals contain coeval primary, hydrocarbon-bearing- and aqueous inclusions indicating that also hydrocarbons have migrated together with the mineralising fluids. Hydrocarbon inclusions are described here for the first time from the Buda Hills. Mixed inclusions, i.e., petroleum with ‘water-tail’, were also detected, indicating that transcrystalline water migration took place. The coexistence of aqueous and petroleum inclusions permitted to establish the entrapment temperature (80°C) and pressure (85 bar) of the fluid and thus also the thickness of sediments, having been eroded since latest Early Miocene times, was calculated (800 m). Low salinity of the fluids (<1.7 NaCl eq. wt%) implies that hydrocarbon-bearing fluids were diluted by regional karst water. FT-IR investigations revealed that CO2 and CH4 are associated with hydrocarbons. Groundwater also contains small amounts of HC and related gases on the basin side even today. Based on the location of the paleo- and recent hydrocarbon indications, identical migration pathways were reconstructed for both systems. Hydrocarbon-bearing fluids are supposed to have migrated north-westward from the basin east to the Buda Hills from the Miocene on.  相似文献   
6.
In the considered wide sector of the West-Mediterranean southern Europe, the collisional phase of the Variscan orogeny during Late Carboniferous and Permian times was followed by magmatic intrusive and effusive activity and sedimentation into intracontinental, alluvial to lacustrine basins originated by wrench- to normal-fault systems. The first volcanic cycle (generally Late Carboniferous-Early Permian in age) is represented by early calc-alkaline andesites and rhyolites, in variable amounts, and by following large volume of rhyolites, and by dacites. Both andesites and rhyolites show K-normal and high-K calc-alkaline character. The origin of the liquids of the first cycle is ascribed to partial melting processes at the mantle–crust interface telescoped within a thickened crust. The melting is considered as the consequence of thermal re-equilibration following isostatic disequilibrium and the subsequent collapse of the orogenic belt; the ascent of liquids occurred in a (trans-)tensional regime. The second magmatic cycle is represented by alkaline magmatism, and exhibits typical anorogenic features consistent with a rifting regime. This event was no more related with the collapse of the Variscan belt, but rather to the post-Variscan global re-organization of plates that evolved during Late Triassic times to the neo-Tethyan rifting. In both cycles, important differences in timing, areal distribution and outpoured volumes arise.  相似文献   
7.
The orogenic Balkanid belt, which developed between the Moesian Plate and the Moravian-Rhodopi-Thracian Massifs, was affected by the Late Carboniferous and Early Permian opening of W-E oriented graben structures. The progressive tectonic rejuvenation of the basins is demonstrated by the deposition of repeated regional sedimentary cycles, associated with volcanism that was mostly localised along the tectonic boundaries, in an intramontane setting.The Late Carboniferous volcanism is represented by rhyodacitic explosive products and hyaloclastites, and by andesitic flows. During the Early Permian, subvolcanic rhyodacitic and rhyolitic bodies and the explosive products prevailed in the western sectors, whereas rhyolitic ignimbrites occur to the east.The tectonically active basins are interpreted due to late orogenic collapse, and the alternation of extensional tectonics and minor compressional phases is consistent with the regional transtensional regime, active along the Variscan suture of Pangaea. The volcanic activity associated with the evolution of the basins matches the petrogenetic features and the evolution from early dacitic – andesitic to late rhyolitic activity in the Southern European segment of the Variscan system.These Late Carboniferous-Early Permian sedimentary and tectono-magmatic events in Bulgaria are characterized, and compared with the homologous Permo-Carboniferous sequences along some western European segments of the Variscan belt.  相似文献   
8.
The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime.Volcanism produced a wide range of intermediate-silicic magmas including medium-to high-K calc-alkaline andesites,dacites,and rhyolites.A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins(Nurra,Perdasdefogu,Escalaplano,and Seui-Seulo),and contains substantial stratigraphic,geochemical,and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic.Based on major and trace element data and LA-ICP-MS U-Pb zircon dating,it is possible to reconstruct the timing of postVariscan volcanism.This volcanism records active tectonism between the latest Carboniferous and Permian,and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides.In particular,igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between299±1 and 288±3 Ma,thereby constraining the development of continental strike-slip faulting from south(Escalaplano Basin)to north(Nurra Basin).Notably,andesites emplaced in medium-grade metamorphic basement(Mt.Cobingius,Ogliastra)show a cluster of older ages at 332±12 Ma.Despite the large uncertainty,this age constrains the onset of igneous activity in the mid-crust.These new radiometric ages constitute:(1)a consistent dataset for different volcanic events;(2)a precise chronostratigraphic constraint which fits well with the biostratigraphic data and(3)insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.  相似文献   
9.
This paper presents the results of a parametric study in which a series of fully coupled, 3-dimensional thermo-hydro-mechanical Finite Element (FE) analyses has been conducted to investigate the effects of the thermal changes imposed by the regular performance of a GSHP system driven by energy piles on a very large piled raft. The FE simulation program has been focused mainly on the evaluation of the following crucial aspects of the energy system design: the assessment of the soil–pile–raft interaction effects during thermal loading conditions; the quantification of the influence of the thermal properties of the soil and of the geometrical layout of the energy piles on the soil–foundation system response, and the evaluation of the influence of the active pile spacing on the thermal performance of the GSHP–energy pile system. The results of the numerical simulations show that the soil–pile–raft interaction effects can be very important. In particular, the presence of a relatively rigid raft in direct contact with the soil is responsible for axial load variations in inactive piles of the same order of those experienced by the thermo-active piles, even when the latter are relatively far and temperature changes in inactive piles are small. As far as the effect of pile spacing is concerned, the numerical simulations show that placing a high number of energy piles in a large piled raft with relatively small pile spacings can lead to a significant reduction of the overall heat exchange from the piles to the soil, thus reducing the thermal efficiency of the system.  相似文献   
10.
The Val Daone Conglomerate (VDC) is a continental clastic unit that crops out eastwards of the central Southern Alps, from the NE sector of the Collio Basin to the W as far as the Tione Basin to the E. This significant but as yet relatively unknown formation lies just above the regional unconformity that marks the boundary between the two Permian major tectono-sedimentary cycles (TSU1 and TSU2) and grades upwards paraconformably (?) to the fluvial red beds of Verrucano Lombardo/Val Gardena Sandstone, generally associated with Late Permian times. Recent palynological investigations on the VDC suggested a Guadalupian age (late Roadian–early Wordian), owing to the remarkable presence of diversified pollen associations; therefore, this sedimentary unit is to date the first one ascribed, on a palaeontological basis, to the Middle Permian in the entire Southern Alps domain. A detailed facies analysis of VDC shows deposition in amalgamated alluvial fan-braided and fluvial environments with wide channels and longitudinal bars. In its type area and Val Rendena, the VDC rests unconformably above the last volcanic episode of the TSU1. LA ICP-MS U–Pb dating on zircon from two samples of such topmost Lower Permian volcanic rocks, known as Ponte Murandin dacitic lava and Malga Plan rhyodacitic Ignimbrites (Tione Basin), provided Concordia ages of 278 ± 2 Ma (MSWD = 0.01) and 279 ± 2 Ma (MSWD = 0.16), respectively. As well as allowing us to better define the duration of the time gap between the two Permian megacycles in the central Southern Alps in almost 10 Ma, these radiometric age determinations are also significant because they enable us to regionally link the coeval volcanic bodies which crop out in the Collio Basin to the SW and in the “Athesian Volcanic Group” to the NE, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号