首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   7篇
海洋学   2篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Narragansett Bay has been heavily influenced by human activities for more than 200 years. In recent decades, it has been one of the more intensively fertilized estuaries in the USA, with most of the anthropogenic nutrient load originating from sewage treatment plants (STP). This will soon change as tertiary treatment upgrades reduce nitrogen (N) loads by about one third or more during the summer. Before these reductions take place, we sought to characterize the sewage N signature in primary (macroalgae) and secondary (the hard clam, Mercenaria mercenaria) producers in the bay using stable isotopes of N (δ15N) and carbon (δ13C). The δ15N signatures of the macroalgae show a clear gradient of approximately 4‰ from north to south, i.e., high to low point source loading. There is also evidence of a west to east gradient of heavy to light values of δ15N in the bay consistent with circulation patterns and residual flows. The Providence River Estuary, just north of Narragansett Bay proper, receives 85% of STP inputs to Narragansett Bay, and lower δ15N values in macroalgae there reflected preferential uptake of 14N in this heavily fertilized area. Differences in pH from N stimulated photosynthesis and related shifts in predominance of dissolved C species may control the observed δ13C signatures. Unlike the macroalgae, the clams were remarkably uniform in both δ15N (13.2 ± 0.54‰ SD) and δ13C (−16.76 ± 0.61‰ SD) throughout the bay, and the δ15N values were 2–5‰ heavier than in clams collected outside the bay. We suggest that this remarkable uniformity reflects a food source of anthropogenically heavy phytoplankton formed in the upper bay and supported by sewage derived N. We estimate that approximately half of the N in the clams throughout Narragansett Bay may be from anthropogenic sources.  相似文献   
2.
3.
In the Northeastern U.S., salt marsh area is in decline. Habitat change analysis has revealed fragmentation, displacement of high marsh by low marsh species, and marsh drowning, while development of adjacent uplands limits upslope migration. Measures of marsh vegetation loss for eight sites in Rhode Island and New York between ca.1970 and 2011 indicate that substantial loss has occurred over past decades, with higher loss rates found for lower elevation salt marshes. Using inundation experiments, field surveys, and LiDAR datasets, we developed an elevation-productivity relationship for Spartina alterniflora specific to the U.S. Northeast, and located current salt marsh orthometric heights on this curve. We estimate that 87 % of Northeastern salt marshes are located at elevations where growth is limited by inundation. By manipulating water column nutrients, precipitation, and elevation, we further found that altered precipitation regime was associated with significant reductions in biomass, and that nutrient enrichment adversely impacts organic matter accumulation and peat formation. These results provide evidence that Northeastern U.S. marshes are vulnerable to the effects of accelerated sea level rise, and that neither precipitation changes, nor cultural eutrophication, will contribute positively to long-term salt marsh survival.  相似文献   
4.
Apalachicola Bay lies at the mouth of the Apalachicola River, where seasonally variable freshwater inflows and shifting winds have long been thought to contribute to the support of an unusually productive and commercially important oyster fishery. Links between the river and productivity have been shown to lie in salinity-induced reductions in oyster predators and oyster disease as well as organic supplements from an extensive floodplain. Several studies have also indicated that nitrogen (N) and phosphorous (P) carried by the river are important in fertilization of bay primary production. While there is concern that upstream water withdrawals may impact the fishery, the importance of riverine N to oyster diets remains unclear. We measured N and carbon (C) stable isotopes (δ15N, δ13C) in macroalgae, surface-water nitrate, and surface sediments, which showed a gradient from enriched riverine δ15N values to more depleted values in the Gulf of Mexico. In contrast, δ13C of particulate matter is depleted in the river and enriched offshore. Oyster stable isotope values throughout Apalachicola Bay are more complex, but are dominated by freshwater inputs and reflect the variability and hydrodynamics of the riverine inflows.  相似文献   
5.
Human encroachment on the coastal zone has led to concern about the impact of anthropogenic nitrogen (N) on estuarine and continental shelf waters. Western North Atlantic watershed budgets suggest that the export of human-derived N from estuaries to shelf waters off the east coast of the US may be significant; however, models based on water inputs and estimates of upwelling of deepwater nutrients to surface waters of the mid-Atlantic bight indicate that estuarine N may be a relatively minor component of the overall shelf N budget. Stable N isotope ratios could provide a means to assess the relative input of anthropogenic N to shelf waters, particularly since dissolved N from human sources has elevated δ15N values (range: 7–30‰). We collected particulate material from surface shelf waters off the US east coast from 2000 to 2005 at near-shore sample sites proximal to the mouth of six estuaries and corresponding sites farther offshore. Near-shore (mean 33.7 km from estuary mouth) δ15N values ranged from 5.5 to 7.7‰ Offshore values (mean 92.4 km from estuary mouth) were consistently lower than near-shore sites (average 4.7 ± 1.0‰ versus 6.8 ± 1.1‰), suggesting different N sources to near and offshore stations. Near-shore regions are often more productive, as mean monthly chlorophyll-a concentrations from the sea-viewing wide field-of-view sensor (SeaWiFS) were significantly higher at near-shore sites near the mouth of three of the six estuaries. A mass balance using a concentration-dependent mixing model with chlorophyll-a concentrations as a surrogate for dissolved inorganic nitrogen can account for all of the nitrogen at near-shore sites south of Cape Cod with estuarine nitrogen estimated to contribute 45–85% of the nitrogen to the near-shore surface particulate material. Our results support the hypothesis that estuarine nitrogen is influencing continental shelf ecosystems, and also provide preliminary evidence of the spatial extent of its influence on shelf waters in the mid-Atlantic bight.  相似文献   
6.
There is a conceptual basis, and some empirical evidence, that increasing nutrient loads to coastal waterbodies will initially increase ecosystem productivity up to a threshold, beyond which secondary productivity and fishery yields will decline. Here we have compiled data from the Egyptian and international literature for fish landings and inorganic nutrient (nitrogen and phosphorus) data from four large coastal lagoons (63–500 km2) on Egypt's Nile Delta to provide evidence for the initially positive, but then negative, response of fishery yields to increased nutrient supply across a very wide range of enrichment (up to 1 mM dissolved organic nitrogen, DIN). Taking the data from the four lagoons as an aggregate, fish landings increase with increased nutrients up to a peak in landings at approximately 100 μM DIN, beyond which there was an exponential decline in landings. It appears that pesticide and heavy metal contamination and overfishing played only minor roles in the lowered fishery yield at highest DIN concentrations. We do not have sufficient evidence about the specific mechanisms that led to the decline of the fishery, but suspect that some feature of eutrophication—low oxygen, for example, may have been involved.  相似文献   
7.
When nutrients impact estuarine water quality, scientists and managers instinctively focus on quantifying and controlling land-based sources. However, in Greenwich Bay, RI, the estuary opens onto a larger and more intensively fertilized coastal water body (Narragansett Bay). Previous inventories of nitrogen (N) inputs to Greenwich Bay found that N inputs from Narragansett Bay exceeded those from the local watershed, suggesting that recent efforts to reduce local watershed N loads may have little effect on estuarine water quality. We used stable isotopes of N to characterize watershed and Narragansett Bay N sources as well as the composition of primary producers and consumers throughout Greenwich Bay. Results were consistent with previous assessments of the importance of N inputs to Greenwich Bay from Narragansett Bay. As multiple N sources contribute to estuarine water quality, effective management requires attention to individual sources commensurate with overall magnitude, regardless of the political complications that may entail.  相似文献   
8.
Coastal wetlands, well recognized for their ecosystem services, have faced many threats throughout the USA and elsewhere. While managers require good information on the net impact of these combined stressors on wetlands, little such information exists. We conducted a 4-month mesocosm study to analyze the multiple stressor effects of precipitation changes, sea level rise, and eutrophication on the salt marsh plant Spartina alterniflora. Pots containing plants in an organic soil matrix were positioned in tanks and received Narragansett Bay (RI, USA) water. The study simulated three precipitation levels (ambient daily rain, biweekly storm, and drought), three levels of tidal inundations (high (15 cm below mean high water (MHW)), mean (MHW), and low (15 cm above MHW)), and two nutrient enrichment levels (unenriched and nutrient-enriched bay water). Our results demonstrate that storm and drought stressors led to significantly less above- and belowground biomass than those in ambient rain conditions. Plants that were flooded at high inundation had less belowground biomass, fine roots, and shoots. Nutrients had no detectable effect on aboveground biomass, but the enriched pots had higher stem counts and more fine roots than unenriched pots, in addition to greater CO2 emission rates; however, the unenriched pots had significantly more coarse roots and rhizomes, which help to build peat in organogenic marshes. These results suggest that multiple stressors of altered precipitation, sea level rise, and nutrient enrichment would lead to reduced marsh sustainability.  相似文献   
9.
The present study reports nitrogen and carbon stable isotope data (δ15N and δ13C) from four large (63–400 km2), shallow (∼1 m) coastal lagoons on Egypt’s Nile Delta. While the lagoons all receive sewage and agricultural drainage, the magnitude of loading varies. In this preliminary survey, we document wide variability in the δ15N and δ13C isotope values of major fish groups among these lagoons. There were no consistent or significant differences among the major groups of fish, including carp, catfish, mullet, and tilapia. There was a strong positive correlation (R 2 = 0.84) between the average δ15N values of fish muscle and estimated water residence time among the lagoons. This preliminary evidence suggests that nitrogen cycle transformations may be more important than primary N source differences in determining N isotopic ratios of organisms in the lagoons. The δ13C results point to the probable importance of autochthonous particulate organic matter rather than terrestrial detritus or marine plankton in the diets of resident fish populations in the lagoons.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号