首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地质学   11篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 376 毫秒
1.
The Temaguessine high-level subcircular pluton is intrusive into the LATEA metacraton (Central Hoggar) Eburnian (2 Ga) basement and in the Pan-African (615 Ma) granitic batholiths along a major NW–SE oriented major shear zone. It is dated here (SHRIMP U–Pb on zircon) at 582 ± 5 Ma. Composed of amphibole–biotite granite and biotite syenogranite, it comprises abundant enclaves: mafic magmatic enclaves, country-rock xenoliths and remarkable Fe-cordierite (#Fe = 0.87) orbicules. The orbicules have a core rich in cordierite (40%) and a leucocratic quartz–feldspar rim. They are interpreted as resulting from the incongruent melting of the meta-wacke xenoliths collapsed into the magma: the breakdown of the biotite + quartz assemblage produced the cordierite and a quartz–feldspar minimum melt that is expelled, forming the leucocratic rim. The orbicule generation occurred at T < 850° and P < 0.3 GPa. The Fe-rich character of the cordierite resulted from the Fe-rich protolith (wacke with 4% Fe2O3 for 72% SiO2). Strongly negative εNd (−9.6 to −11.2), Nd TDM model ages between 1.64 and 1.92 Ga, inherited zircons between 1.76 and 2.04 Ga and low to moderately high ISr (0.704–0.710) indicate a Rb-depleted lower continental crust source for the Temaguessine pluton; regional considerations impose however also the participation of asthenospheric material. The Temaguessine pluton, together with other high-level subcircular pluton, is considered as marking the end of the Pan-African magma generation in the LATEA metacraton, resulting from the linear delamination along mega-shear zones, allowing asthenospheric uprise and melting of the lower continental crust. This implies that the younger Taourirt granitic province (535–520 Ma) should be considered as a Cambrian intraplate anorogenic event and not as a very late Pan-African event.  相似文献   
2.
Palaeozoic formations of the Tassilis Oua-n-Ahaggar (southeastern Hoggar) include magmatic rocks in the Tin Serririne syncline. Slight contact metamorphism of the overlying bed and studies of anisotropy of magnetic susceptibility of these rocks show that the latter correspond to sills and NW–SE or north–south dykes. 40K/40Ar dating of separated feldspars and whole rock for one sample and of whole rock for two other samples give a mean age of 347.6±16.2Ma (at the 2-σ level), thus corresponding to a Lower Carboniferous (Tournaisian) age. Taking into account both the age of this magmatism and the stratigraphic and structural data for this region suggests that dolerites were emplaced within distensive zones that are related to the reactivation of Panafrican faults. To cite this article: H. Djellit et al., C. R. Geoscience 338 (2006).  相似文献   
3.
4.
The Late Panafrican evolution of the Hoggar shield is characterized by emplacement of magmatic intrusions and by occurrence of major shear zones separating different terranes. In Telloukh granite is close to the In Guezzam faults (western border of the Tin Serririne basin). Analysis of its visible and magnetic fabrics suggests an emplacement mode and deformation that are not related to the In Guezzam faults, but most likely to a N–S compression, an event not yet identified. Dioritic dykes crosscutting the granite have a very different magnetic fabric, which is related on the contrary to dextral strike-slip movements along the In Guezzam faults. In both cases, no visible fabric can be correlated with the magnetic fabric, which has been likely acquired during late magmatic stages. This magnetic fabric was not significantly affected by the tectonic events that took place after entire crystallization of the magma. The In Guezzam faults and the major 7°30 and 4°50 shear zones are close to intrusions such as In Telloukh dykes and the Alous En Tides and Tesnou plutons where quite similar magnetic fabrics are observed, all related with dextral strike-slip movements along these structures.  相似文献   
5.
In North Africa, the Algerian margin is made of basement blocks that drifted away from the European margin, namely the Kabylia, and docked to the African continental crust in the Early Miocene. This young margin is now inverted, as dated Miocene (17 Ma) granites outcrop alongshore, evidencing kilometre‐scale exhumation since their emplacement. Age of inversion is actually unknown, although Pliocene is often considered in the offshore domain. To decipher the exhumation history of the margin between 17 and 5 Ma, we performed a coupled apatite fission track (AFT) and (U–Th–Sm)/He (AHe) study in the Cap Bougaroun Miocene granite. AFT dates range between 7 ± 1 and 10 ± 1 Ma, and mean AHe dates between 8 ± 2 and 10 ± 1 Ma. These data evidence rapid and multi‐kilometre exhumation during Tortonian times. This event cannot be related to slab break‐off but instead to the onset of margin inversion that has since developed as an in‐sequence north‐verging deforming prism.  相似文献   
6.
In this paper, we show with examples that cratons involved in intercontinental collisions in a lower plate position are often affected by orogenic events, leading to the transformation of their margins. In some cases, craton interiors can also be shaped by intense collisional processes, leading to the generation of intracratonic orogenic belts. We propose to call these events “metacratonization” and the resulting lithospheric tract “metacraton”. Metacratons can appear similar to typical orogenic belts (i.e. active margin transformed by collisional processes) but are actually sharply different. Their main distinctive characteristics (not all are present in each metacraton) are: (1) absence of pre-collisional events; (2) absence of lithospheric thickening, high-pressure metamorphism being generated by subduction, leading to high gradient in strain and metamorphic intensity; (3) preservation of allochthonous pre-collisional oceanic terranes; (4) abundant post-collisional magmatism associated with shear zones but not with lithospheric thickening; (5) presence of high-temperature–low-pressure metamorphism associated with post-collisional magmatism; (6) intracontinental orogenic belts unrelated to subduction and oceanic basin closures. Reactivation of the rigid but fractured metacratonic lithosphere will cause doming, asthenospheric volcanism emplacement, and mineralizations due to repetitive mineral enrichments. This paper provides several geological cases exemplifying these different metacratonic features in Scandinavia, Sahara, Central Africa and elsewhere. A special focus is given to the Saharan Metacraton because it is where the term “metacraton” originated and it is a vastly expanded tract of continental crust (5,000,000 km2). Metacratonization is a common process in the Earth's history. Considering the metacraton concept in geological studies is crucial for understanding the behavior of cratons and their partial destruction.  相似文献   
7.
A paleomagnetic study has been conducted on intrusive doleritic rocks cropping out within Devonian horizontal tabular formations of the Saharan craton (Tin Serririne basin, South of Hoggar shield). The 40K/40Ar dating of the dolerites gave an age of 347.6 ± 8.1 Ma, i.e. Tournaisian. The paleomagnetic data present three different directions. The first has a paleomagnetic pole close to the previous African poles of Permian age. This direction is therefore interpreted as a Permian remagnetization. The second direction, which is defined by both linear regression and remagnetization circles analysis, is considered as the primary magnetization. It yields a new African Tournaisian paleomagnetic pole (λ = 18.8° S,  = 31.2° E, K = 29, A95 = 7.5°) very close to the Ben Zireg Tounaisian pole [Aifa, T., Feinberg, H., Pozzi, J.P., 1990. Devonian/Carboniferous paleopoles for Africa. Consequences for Hercynian geodynamics. Tectonophysics, 179, 288–304]. The third direction has intermediate orientation between those of the first or second directions and that of the Upper Cenozoic field. It is interpreted as related to a composite magnetization. This new Tin Serririne pole improves the APWP of Gondwana, for this key period of the evolution of the Pangea. This APWP confirms the previous paleogeographic reconstruction which shows that the pre-Hercynian ocean between Gondwana and Laurussia is still not close during the beginning of the Carboniferous.  相似文献   
8.
In Ordovician and Silurian sedimentary formations of the Murzuq basin (Saharan platform, Algeria), different remagnetization processes have been highlighted. These magnetic overprints totally replaced the primary magnetization. They are mainly due to chemical phenomena. Even in a site affected by contact metamorphism during Devonian, chemical changes, associated to the acquisition of the thermo-remanent overprint, were important, affecting the characteristics of the magnetite grains. In the remaining sites, remagnetizations of Cenozoic age have also a chemical origin and are carried by magnetite as well as by hematite. Contrary to what is generally deemed, these remagnetizations processes appeared limited to very short duration of acquisition, and to very local geographical extension.  相似文献   
9.
Miocene igneous rocks (diorites, andesites, dacites, rhyolites and microgranites) of Chetaibi and Cap de Fer massif, NE Algeria, are high-K calc-alkaline to shoshonitic rocks. Fresh diorites have δ34S and δ18O values ranging between −2.5‰ and +5.9‰, +6.5‰ and +6.7‰ respectively, indicating a mantle origin. The relatively low δ34S values (−5.4‰ to −12.2‰) and high δ18O (+8.3‰ to +9.0‰) of altered diorites indicate the input of a crustal component to the initial magma. The microgranites’ I-type signature is indicated by the geochemical data and the δ34S and δ18O values of −1.2‰ and −3.6‰, and +7.8‰ to +10.4‰ respectively. The andesites show a large variation of δ34S, between −33.2‰ and +25.7‰. Massive andesites with δ34S between +6.8‰ and +7.6‰ preserve a 34S-enriched mantle signature. The δ34S of the lava flows between +25.7‰ and +25.8‰ are attributed to open system magma degassing, whereas the low δ34S of two andesitic dyke samples (−13.7‰ and −33.2‰) strongly suggest a crustal sulphur input. High δ18O (+9.2‰ to +15.7‰) of andesites indicate post-magmatic alteration (mainly silicification); the flyschs with δ18O between of +13.3‰ and +21.7‰ are most likely the contaminant. Quartz veins within the andesites gave a δ18O value of +23.0‰ while silica-filling vesicles yielded a value of +13.8‰. Initial Sr-isotope data are rather high for all the rocks (diorites: 0.707–0.708, andesites: 0.707–0.710, and microgranites and rhyolites: 0.717–0.719), and because geochemical and stable isotope data do not indicate a substantial amount of crustal assimilation, an extensive enrichment of the mantle source by subducted sediments is called for. A metasomatized-mantle source, characterized by high radiogenic Sr and relatively high δ18O, has also been indicated for the genesis of similar Tertiary igneous rocks in the Western Mediterranean basin, e.g. the Volcanic Province of southeasten Spain [Benito, R., Lopez-Ruiz, J., Cebria, J.M., Hertogen, J., Doblas M., Oyarzun, R., Demaiffe, D., 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46, 773–802] and some plutons of northeastern Algeria [Ouabadi, A., 1994. Pétrologie, géochimie et origine des granitoïdes peralumineux à cordiérite (Cap Bougaroun, Béni-Touffout et Filfila), Algérie nord-orientale. Thèse de Doctorat, Université de Rennes I, France, 257p; Fourcade, S., Capdevila, R., Ouabadi, A., Martineau, F., 2001. The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria. A combined petrological, mineralogical, geochemical and isotopic (O, H, Sr, Nd) study. Lithos 57, 187–216].  相似文献   
10.
The Anfeg batholith (or composite laccolith) occupies a large surface (2000 km2) at the northern tip of the Laouni terrane, just south of Tamanrasset in Hoggar. It is granodioritic to granitic in composition and comprises abundant enclaves that are either mafic microgranular enclaves (MME) or gneissic xenoliths. It intruded an Eburnian (≈2 Ga) high-grade basement belonging to the LATEA metacraton at approximately 608 Ma (recalculated from the U–Pb dating of [Tectonics 5 (1986) 955]) and cooled at approximately 4 kbar, with a temperature of about 750 °C. This emplacement occurred mainly along subhorizontal thrust planes related to Pan-African subvertical mega-shear zones close to the attachment zone of a strike-slip partitioned transpression system. Although affected by some LILE mobility, the Anfeg batholith can be ascribed to a high-K calc-alkaline suite but characterized by low heavy REE contents and high LREE/HREE ratios. The MME belong to the Anfeg magmatic trend while some xenoliths belong to Neoproterozoic island arc rocks.The Anfeg batholith defines a Nd–Sr isotopic initial ratios trend (Nd/(87Sr/86Sr)i from −2.8/0.7068 to −11.8/0.7111) pointing to a mixing between a depleted mantle and an old Rb-depleted granulitic lower crust. Both sources have been identified within LATEA and elsewhere in the Tuareg shield (Nd/87Sr/86Sr)i of +6.2/0.7028 for the depleted mantle, −22/0.708 for the old lower crust.The model proposed relates the above geochemical features to a lithospheric delamination along the subvertical mega-shear zones that dissected the rigid LATEA former passive margin without major crustal thickening (metacratonization) during the general northward tectonic escape of the Tuareg terranes, a consequence of the collision with the West African craton. This delamination allowed the uprise of the asthenosphere. In turn, this induced the melting of the asthenosphere by adiabatic pressure release and of the old felsic and mafic lower crust due to the high heat flow. A gradient in the mantle/crust ratio within the source of the Pan-African magmatism is observed in LATEA from the northeast (Egéré-Aleksod terrane) where rare plutons are rooted within the Archaean/Eburnian basement to the southwest (Laouni terrane) where abundant batholiths, including Anfeg, have a mixed signature. Some mantle melts with only slight crustal contamination (Laouni troctolitic layered intrusions) are even present. This suggests that the southern boundary of LATEA microcontinent is not far south of the Tuareg shield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号