首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   3篇
天文学   5篇
自然地理   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2001年   2篇
  1994年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The mid-Cretaceous White Creek batholith in southeast BritishColumbia is a zoned pluton ranging from quartz monzodioriteon the margin, to hornblende-and biotite-bearing granodioritetowards the interior of the batholith, which are in turn crosscutby two-mica granite. This range in rock type is similar to therange displayed by Mesozoic granitoid suites found in the Cordilleraninterior of western North America. The lithological zones inthe White Creek batholith correlate with distinet jumps in majorelement, trace element, and isotopic compositions, and indicatethat several pulses of magma were emplaced within the WhiteCreek magma chamber. The hornblende-and biotite-bearing granitoidsare metaluminous to weakly peraluminous, have strong light rareearth element (LREE) enrichment, and small negative Eu anomalies.These granitoids have initial Sr ranging from +32 to +84 (87Sr/86SrTfrom 0.7069 to 0.7106), initial Nd ranging from –5 to–10, and initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pbranging from 18.3 to 18.7, 15.58 to 15.65, and 38.3 to 39.0,respectively. The two-mica granites and associated aplites arestrongly peraluminous, and show only moderate LREE enrichmentand strong negative Eu anomalies. These granites have Sr rangingfrom +174 to + 436 (87Sr/86SrT from 0.7169 to 0.7354), Nd rangingfrom –12 to –16, and more radiogenic initial Pbisotope ratios than the hornblende-and biotite-bearing granitoids. Oxygen, Sr, Pb, and Nd isotopes, REE modelling, and phase equilibriumconstraints are consistent with crustal anatexis of Precambrianbasement gneisses and Proterozoic metapelites exposed in southeastBritish Columbia, the product being the hornblende-biotite granitoidsand two-mica granites, respectively. The sequence of intrusionin the White Creek batholith constrains the melting sequence.A zone of anatexis proceeded upwards through the crust, firstmelting basement gneisses then melting overlying metapelites.A model for basaltic magmatic underplating as a primary causeof anatexis of the crust during the mid-Cretaceous magmaticepisode is difficult to reconcile with the absence of earlyCretaceous basalt in the southern Canadian Cordillera. A muchmore likely petrogenetic model is that crustal anatexis wasprobably a response to crustal thickening in association withterrane accretion and collision along the western margin ofthe North American continent.  相似文献   
2.
Mafic to intermediate enclaves are evenly distributed throughoutthe dacitic 1991–1995 lava sequence of Unzen volcano,Japan, representing hundreds of mafic recharge events over thelife of the volcano. This study documents the morphological,textural, chemical, and petrological characteristics of theenclaves and coexisting silicic host lavas. The eruptive productsdescribed in this study appear to be general products of magmamingling, as the same textural types are seen at many othervolcanoes. Two types of magmatic enclaves, referred to as Porphyriticand Equigranular, are easily distinguished texturally. Porphyriticenclaves display a wide range in composition from basalt toandesite, are glass-rich, spherical and porphyritic, and containlarge, resorbed, plagioclase phenocrysts in a matrix of acicularcrystals and glass. Equigranular enclaves are andesitic, non-porphyritic,and consist of tabular, medium-grained microphenocrysts in amatrix glass that is in equilibrium with the host dacite magma.Porphyritic enclaves are produced when intruding basaltic magmaengulfs melt and phenocrysts of resident silicic magma at theirmutual interface. Equigranular enclaves are a product of a moreprolonged mixing and gradual crystallization at a slower coolingrate within the interior of the mafic intrusion. KEY WORDS: mafic enclaves; quenched mafic inclusions; magma mingling; Unzen volcano; Unzen Scientific Drilling Project; resorbed plagioclase  相似文献   
3.
Abstract A survey by air and on the ground revealed no depression at the place supposedly called Ka-imu-hoku, Hawaiian for “The Star Oven”, on the island of Lanai. It had been reported as a “pit in the sand” or “the place where a meteor fell”. Reasons are given for believing the name was based on native observation of a nineteenth century fireball.  相似文献   
4.
Abstract— The platinum group elements (PGE; Ru, Rh, Pd, Os, Ir, Pt), Re and Au comprise the highly siderophile elements (HSE). We reexamine selected isotopic and abundance data sets for HSE in upper mantle peridotites to resolve a longstanding dichotomy. Re‐Os and Pt‐Os isotope systematics, and approximately chondritic proportions of PGE in these rocks, suggest the presence in undepleted mantle of a chondrite‐like component, which is parsimoniously explained by late influx of large planetisimals after formation of the Earth's core and the Moon. But some suites of xenolithic and orogenic spinel lherzolites, and abyssal peridotites, have a CI‐normalized PGE pattern with enhanced Pd that is sometimes termed “non‐chondritic”. We find that this observation is consistent with other evidence of a late influx of material more closely resembling enstatite, rather than ordinary or carbonaceous, chondrites. Regional variations in HSE patterns may be a consequence of a late influx of very large objects of variable composition. Studies of many ancient (>3.8 Ga) lunar breccias show regional variations in Au/Ir and suggest that “graininess” existed during the early bombardment of the Earth and Moon. Reliable Pd values are available only for Apollo 17 breccias 73215 and 73255, however. Differences in HSE patterns between the aphanitic and anorthositic lithologies in these breccias show fractionation between a refractory group (Re, Os and Ir) and a normal (Pd, Ni, and Au) group and may reflect the compositions of the impacting bodies. Similar fractionation is apparent between the EH and EL chondrites, whose PGE patterns resemble those of the aphanitic and anorthositic lithologies, respectively. The striking resemblance of HSE and chalcogen (S, Se) patterns in the Apollo aphanites and high‐Pd terrestrial peridotites suggest that the “non‐chondritic” abundance ratios in the latter may be reflected in the composition of planetisimals striking the Moon in the first 700 Ma of Earth–Moon history. Most notably, high Pd may be part of a general enhancement of HSE more volatile than Fe suggesting that the Au abundance in at least parts of the upper mantle may be 1.5 to 2x higher than previously estimated. The early lunar influx may be estimated from observed basin‐sized craters. Comparison of relative influx to Earth and Moon suggests that the enrichment of HSE is limited to the upper mantle above 670 km. To infer enrichment of the whole mantle would require several large lunar impacts not yet identified.  相似文献   
5.
Abstract. This is a history of the identification of the crater by the late Daniel Moreau Barringer, Jr., in 1926, and subsequent exploration. The findings at Odessa and at Barringer Crater are compared and problems posed.  相似文献   
6.
Piston-cylinder experiments were performed at 10 kbar to investigatethe near-solidus partial melting systematics of modally variableperidotites. Starting materials consisted of compositionallyintermediate (i.e. containing moderate incompatible elementabundances) minerals, separated from a spinel lherzolite xenolithfrom Mt. Noorat, SE Australia, and recombined to create fivestarting mixtures varying in their proportions of olivine, orthopyroxene,clinopyroxene (Cpx), and spinel. These modes match those ofstarting materials made with fertile (FER) minerals from a differentxenolith, investigated in a companion study. A layer of vitreouscarbon spheres provided a melt sink in the experiments. Solidustemperatures for the five peridotites are similar and estimatedto be  相似文献   
7.
Abstract– Aubrites exhibit a wide range of highly siderophile element (HSE—Re, Os, Ir, Ru, Rh, Pt, Pd, Au) concentrations and 187Os/188Os compositions. Their HSE concentrations are one to three orders of magnitude less than chondrites, with the exception of the Shallowater and Mt. Egerton samples. While most aubrites show chondritic HSE abundance ratios, significant enrichments of Pd and Re relative to Os, Ir, and Ru are observed in 12 of 16 samples. Present‐day 187Os/188Os ratios range from subchondritic values of 0.1174 to superchondritic values of up to 0.2263. Half of the samples have 187Os/188Os ratios of 0.127 to 0.130, which is in the range of enstatite chondrites. Along with the brecciated nature of aubrites, the HSE and Re‐Os isotope systematics support a history of extensive postaccretion processing, including core formation, late addition of chondritic material and/or core material and potential breakup and reassembly. Highly siderophile element signatures for some aubrites are consistent with a mixing of HSE‐rich chondritic fragments with a HSE‐free aubrite matrix. The enrichments in incompatible HSE such as Pd and Re observed in some aubrites, reminiscent of terrestrial basalts, suggest an extensive magmatic and impact history, which is supported by both the 187Re‐187Os isotope system and silicate‐hosted isotope systems (Rb‐Sr, K‐Ar) yielding young formation ages of 1.3–3.9 Ga for a subset of samples. Compared with other differentiated achondrites derived from small planetary bodies, aubrites show a wide range in HSE concentrations and 187Os/188Os, most similar to angrites. While similarities exist between the diverse groups of achondrites formed early in solar system history, the aubrite parent body(ies) clearly underwent a distinct evolution, different from angrites, brachinites, ureilites, howardites, eucrites, and diogenites.  相似文献   
8.
Abstract– Northwest Africa (NWA) 5298 is an evolved basaltic shergottite that has bulk characteristics and mineral compositions consistent with derivation from an oxidized reservoir in Mars. Chemically zoned clinopyroxene (64.5%, augite and pigeonite), with interstitial lath‐shaped plagioclase (29.4%, An40 to An55), constitutes the bulk of this meteorite. The plagioclase has been converted by shock to both isotropic maskelynite and spherulitic, birefringent feldspar representing a quenched vesicular melt. The remainder of the rock consists of minor amounts of Fe‐Ti oxides (ilmenite and titanomagnetite), phosphates (merrillite and apatite), silica polymorph, fayalite, pyrrhotite, baddeleyite, and minor hot desert weathering products (calcite and barite). Oxygen fugacity derived from Fe‐Ti oxide thermobarometry is close to the quartz‐fayalite‐magnetite (QFM) buffer indicating that the late stage evolution of this magma occurred under more oxidizing condition than those recorded in most other shergottites. Merrillite contains the largest abundances of rare earth elements (REE) of all phases, thereby controlling the REE budget in NWA 5298. The calculated bulk rock REE pattern normalized to CI chondrite is relatively flat. The evolution of the normalized REE patterns of the bulk rock, clinopyroxene, plagioclase, and phosphate in NWA 5298 is consistent with closed‐system chemical behavior with no evidence of crustal contamination or postcrystallization disturbance of the REE contents of these phases.  相似文献   
9.
Lake Shewa in northeastern Badakhshan, Afghanistan, was dammed sometime in antiquity when a large rock avalanche (sturzstrom) from the fault‐shattered and strongly weathered Archean gneisses of the Zirnokh peaks to the north moved into the Arakht River valley. This rock avalanche dammed up the river and its tributaries to a dam thickness of c. 400 m, producing a 12‐km‐long lake that is as much as 270 m deep, leaving c. 80 m of freeboard to the top of the dam. At least four separate instances of slope failure have been mapped at the site of the landslide dam, as well as a rock glacier, using remotely sensed data, historical maps, and Google Earth?. Spring seepage through the dam face has caused several recent subsidiary debris slides, which if continued at a large enough scale for long enough, or with additional seismicity from the active strike‐slip faults that cross beneath the landslide dam, could threaten its integrity. Otherwise the clean water that emerges from the dam face could be the source of an unvarying mini‐hydroelectric power source, in addition to the agricultural irrigation that it provides at the present time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号