首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
测绘学   1篇
地球物理   1篇
地质学   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

The digital transformation taking place in all areas of life has led to a massive increase in digital data – in particular, related to the places where and the ways how we live. To facilitate an exploration of the new opportunities arising from this development the Urban Thematic Exploitation Platform (U-TEP) has been set-up. This enabling instrument represents a virtual environment that combines open access to multi-source data repositories with dedicated data processing, analysis and visualisation functionalities. Moreover, it includes mechanisms for the development and sharing of technology and knowledge. After an introduction of the underlying methodical concept, this paper introduces four selected use cases that were carried out on the basis of U-TEP: two technology-driven applications implemented by users from the remote sensing and software engineering community (generation of cloud-free mosaics, processing of drone data) and two examples related to concrete use scenarios defined by planners and decision makers (data analytics related to global urbanization, monitoring of regional land-use dynamics). The experiences from U-TEP’s pre-operations phase show that the system can effectively support the derivation of new data, facts and empirical evidence that helps scientists and decision-makers to implement improved strategies for sustainable urban development.  相似文献   
2.
Gully erosion is a major threat concerning landscape degradation in large areas along the northern Tanzanian Rift valley. It is the dominant erosion process producing large parts of the sediments that are effectively conducted into the river network. The study area is located in the Lake Manyara—Makuyuni River catchment, Arusha, northern Tanzania. During fieldwork, we measured topographic data of eight gully systems close to Makuyuni Town. The main focus of this study is to assess gully erosion dynamics using improved DEMs with original resolutions of 30 and 20 m, respectively. We assessed terrain characteristics to extract information on environmental drivers. To improve the DEM, we integrated information deduced from satellite images as well as from acquired GPS field data. Topographic indices such as Stream Power Index or Transport Capacity Index were derived from the re-interpolated DEM. To evaluate gully evolution, we assessed also the longitudinal slope profiles. Finally, the gully evolution phases of each gully were classified according to the concept proposed by Kosov et al. (Eksperimental’naya geomorfologiya, vol 3. Moscow University, Moskva, pp 113–140, 1978). The re-interpolated DEMs revealed a positive response especially for the more developed gullies. We show that the extraction of information on this spatial process scale based on “low-resolution” data is feasible with little additional fieldwork and image interpretation. In fact, areas identified as having a greater risk of gully erosion have been confirmed by observations and surveys carried out in the field.  相似文献   
3.
This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north‐eastern sector of Sicily (southern Italy), as test site. On 1 October 2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence‐only‐based statistical method was applied to obtain susceptibility models capable of distinguishing future activation sites of debris flow and debris slide, which where the main source of failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating 50 replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fit. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for the application of presence‐only methods and remote sensing derived predictors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号