首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地质学   14篇
自然地理   1篇
  2022年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有15条查询结果,搜索用时 203 毫秒
1.
A novel conceptual model of the mechanics of sands is developed within an elastic–plastic framework. Central to this model is the realization that volume changes in anisotropic granular materials occur as a result of two fundamentally different mechanisms. The first is purely kinematic, dilative, and is the result of the changes in anisotropic fabric. There is also a second volume change in granular media that occurs as a direct response to changes in stress as in a standard elastic/plastic continuum. The inclusion of the two sources of volume change results in three important datum states. When subjected to isotropic strains, the resulting stress state in granular materials is not isotropic but lies upon the kinematic normal consolidation line. There exists a state at which the fabric‐induced volumetric strain rate becomes equal to the stress‐induced volumetric strain rate making the total plastic volumetric strain rate equal to zero. Granular response changes from contractive to dilative at this phase transformation line. The third datum state is the one in which the stress‐induced volumetric strain rate is zero. The sand, however, continues to dilate at this state with the difference between stress and dilation ratio a constant as predicted by Taylor's stress–dilatancy rule. These predictions are shown in accordance with experimental data from a series of drained tests and undrained on Ottawa sand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
This study presents results of field tests conducted on anchors used to support wire mesh and cable net rockfall protection systems. The load transfer and failure characteristics of these anchors are different from those used in most civil applications in that loads are often applied transversely to the top of tendon rather than axially. The study included vertical as well as horizontal series of tests conducted on some anchors widely used in wire mesh and cable net rockfall protect systems. It was found that the deformation characteristics of these anchors under vertical loading are nonlinear. They are approximated by a hyperbolic formulation and used to calculate the ultimate capacity. Top-downward progressive cracking of the grout was observed during loading and influences the deformation characteristics of these anchors under horizontal loading. The anchors deflected excessively before they could attain their ultimate capacity in the horizontal direction. Based on the field tests, it appears that the deformation under horizontal loading in the systems can be limited by using an enlarged grout zone at the top.  相似文献   
3.
A 1 km square regular grid system created on the Universal Transverse Mercator zone 54 projected coordinate system is used to work with volcanism related data for Sengan region. The following geologic variables were determined as the most important for identifying volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate geologic variable vectors at each of the 23949 centers of the chosen 1 km cell grid system. Cluster analysis was performed on the 23949 complete variable vectors to classify each center of 1 km cell into one of five different statistically homogeneous groups with respect to potential volcanism spanning from lowest possible volcanism to highest possible volcanism with increasing group number. A discriminant analysis incorporating Bayes’ theorem was performed to construct maps showing the probability of group membership for each of the volcanism groups. The said maps showed good comparisons with the recorded locations of volcanism within the Sengan region. No volcanic data were found to exist in the group 1 region. The high probability areas within group 1 have the chance of being the no volcanism region. Entropy of classification is calculated to assess the uncertainty of the allocation process of each 1 km cell center location based on the calculated probabilities. The recorded volcanism data are also plotted on the entropy map to examine the uncertainty level of the estimations at the locations where volcanism exists. The volcanic data cell locations that are in the high volcanism regions (groups 4 and 5) showed relatively low mapping estimation uncertainty. On the other hand, the volcanic data cell locations that are in the low volcanism region (group 2) showed relatively high mapping estimation uncertainty. The volcanic data cell locations that are in the medium volcanism region (group 3) showed relatively moderate mapping estimation uncertainty. Areas of high uncertainty provide locations where additional site characterization resources can be spent most effectively. The new data collected can be added to the existing database to perform future regionalized mapping and reduce the uncertainty level of the existing estimations.  相似文献   
4.
Natural rock joint roughness quantification through fractal techniques   总被引:8,自引:0,他引:8  
Accurate quantification of roughness is important in modeling hydro-mechanical behavior of rock joints. A highly refined variogram technique was used to investigate possible existence of anisotropy in natural rock joint roughness. Investigated natural rock joints showed randomly varying roughness anisotropy with the direction. A scale dependant fractal parameter, K v, seems to play a prominent role than the fractal dimension, D r1d, with respect to quantification of roughness of natural rock joints. Because the roughness varies randomly, it is impossible to predict the roughness variation of rock joint surfaces from measurements made in only two perpendicular directions on a particular sample. The parameter D r1d × K v seems to capture the overall roughness characteristics of natural rock joints well. The one-dimensional modified divider technique was extended to two dimensions to quantify the two-dimensional roughness of rock joints. The developed technique was validated by applying to a generated fractional Brownian surface with fractal dimension equal to 2.5. It was found that the calculated fractal parameters quantify the rock joint roughness well. A new technique is introduced to study the effect of scale on two-dimensional roughness variability and anisotropy. The roughness anisotropy and variability reduced with increasing scale.  相似文献   
5.
The flow stress in the yield surface of plastic constitutive equation is modified with a higher order gradient term of the effective plastic strain to model the effect of inhomogeneous deformation in granular materials. The gradient constitutive model has been incorporated into the finite element code ABAQUS and used to simulate biaxial shear tests on dry sand. It is shown that the shape of the post-peak segment of the load displacement curve predicted by the numerical analysis is dependent on the mesh size when gradient term is not used. Use of an appropriate gradient coefficient is shown to correct this and predict a unique shape of the load displacement curve regardless of the mesh size. The gradient coefficient required turns out to be approximately inversely proportional to the mesh elemental area. Use of the strain gradient term is found to diffuse the concentration of plastic strains within shear band resulting in its consistent width. The coefficient of the higher gradient term appears as a function of the grain size, the mean confining stress, and the plastic softening modulus. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
6.
This paper studies the effects of initial fabric anisotropy of dry sand in simple shear deformation. The effects of anisotropy are taken into consideration through the modification of the mobilized friction in the Mohr–Coulomb‐type yield surface as a function of a fabric parameter. In addition, the constitutive model uses a gradient term that directly incorporates the effects of material length scale. The constitutive formulation is implemented into ABAQUS finite element code and used to simulate shearing of the dry sand under various conditions of simple shear. The numerical simulations show that while the shear stress response is affected by fabric anisotropy, its effects on strain localization in simple shear are minimal. This is in contrast to other devices such as the biaxial shear. The strain localization in simple shear is controlled more by the imposed boundary conditions. The use of material length scale is shown to remove the effects of strain localization in the shearing response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
Stress history plays an important role in controlling the consolidation behavior of soft clays, but few models exist that can provide quantitative estimate of its influence. In this paper, the Gibson–Lo rheological model is used to simulate the coupled processes of drainage and creep of soft soils that takes stress history into account. A hybrid combination of analytical and numerical methods is adopted to solve the governing equations of consolidation with the nonlinear rheological model. The methodology is applied to a saturated soft soil subjected to surface loading. The soil profile is separated into normally consolidated and overconsolidated layers by a boundary that is allowed to move. Comparisons of the model predictions and its simulations are used to evaluate the effects of stress history, model parameters, and loading pattern on consolidation behavior. It is shown that stress history influences the location of the moving boundary, variations of the profiles of excess pore water pressure dissipation, stress and deformation‐based average degrees of consolidation. Parametric studies conducted show that when soil is stiffer, the excess pore water pressure dissipates much more quickly, and thus the soil consolidates much faster especially at the early stages. The results also show that soil viscosity influences the deformation‐based average degree of consolidation at the latter stages. The consolidation process of soil layer under linear loading is shown to lag behind those under instantaneous loading: the longer the loading period is, the smaller the average degrees of consolidation are no matter how they are defined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
Geotechnical and Geological Engineering - In the Northwest Loess Plateau of China that is full of mountains and deep valleys, high-filled cut-and-cover tunnels (HFCCTs) not only satisfy...  相似文献   
9.
Accurate quantification of rock fracture aperture is important in investigating hydro-mechanical properties of rock fractures. Liquefied wood’s metal was used successfully to determine the spatial distribution of aperture with normal stress for natural single rock fractures. A modified 3D box counting method is developed and applied to quantify the spatial variation of rock fracture aperture with normal stress. New functional relations are developed for the following list: (a) Aperture fractal dimension versus effective normal stress; (b) Aperture fractal dimension versus mean aperture; (c) Fluid flow rate per unit hydraulic gradient per unit width versus mean aperture; (d) Fluid flow rate per unit hydraulic gradient per unit width versus aperture fractal dimension. The aperture fractal dimension was found to be a better parameter than mean aperture to correlate to fluid flow rate of natural single rock fractures. A highly refined variogram technique is used to investigate possible existence of aperture anisotropy. It was observed that the scale dependent fractal parameter, K v, plays a more prominent role than the fractal dimension, D a1d, on determining the anisotropy pattern of aperture data. A combined factor that represents both D a1d and K v, D a1d × K v, is suggested to capture the aperture anisotropy.  相似文献   
10.
The porosity of soils is considered to be a directional measure and its distribution is characterized by a functional form. This form has been used to extend the critical state soil mechanics framework to include the effects of structure in soils. A new internal plastic energy dissipation formulation has been proposed to account for fabric arrangement. New expressions for the yield locus, and the plastic stress–strain response of structural soils have been derived. The applicability of the concepts to model the plastic stress–strain behaviour of a number of soils is illustrated. The advantage of the new model is very well identified in modelling the stress–strain behaviour of K0 consolidated and natural clays. © 1998 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号