首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   1篇
地质学   10篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The Jabali nonsulfide zinc deposit, located northeast of Sana'a (Yemen) contains a geological resource of 12.6 million tonnes of ore grading 8.9% zinc, 1.2% lead and 68 g/t silver, with a projected recovery of ca. 80% zinc. The primary sulfide deposit shows features of both Mississippi Valley and Carbonate Replacement types, and is believed to have been formed by circulating hydrothermal fluids, either associated with Mesozoic rifting, or generated from Tertiary igneous activity, developed in the area during the Red Sea crustal extension. An extension of this phenomenon should have also triggered the late uplift, which favored the oxidation of sulfides. Ore deposition has been accompanied by several dolomitization phases, some of which have been considered strictly hydrothermal.  相似文献   
2.
3.
Mineralogy and Petrology - The island of Sardinia (Italy) presents some of the most interesting zeolite ores in Europe, most of which are associated with old pyroclastic deposits. In particular,...  相似文献   
4.
Summary The water content of nephelines from volcanic, subvolcanic and metamorphic parageneses of Somma-Vesuvio, Italy was studied by polarized FTIR microspectrometry on oriented (0001) crystal plates. The H(in2)O content varies from 0.05 to 0.39 wt% and is mainly controlled by the number of vacancies in the alkali site. Most samples show an inhomogeneous distribution of the H2O molecules, oriented with their H-H-axis perpendicular to [0001]. The absorption behaviour in the region of the OH-stretching fundamentals is characterized by four spectra types. The high temperature spectrum of a thermally treated nepheline reported by Beran and Rossman (1989) also occurs in some natural samples from the metamorphic paragenesis of Somma-Vesuvio.
Zusammenfassung Variabler Wassergehalt im Nephelin vom Somma-Vesuvio, Italien Der Wassergehalt von Nephelinen aus vulkanischen, subvulkanischen and metamorphen Paragenesen vom Somma-Vesuvio, Italien wurde mittels polarisierter FTIRMikrospektrometrie an orientierten (0001) Kristallplatten untersucht. Der H2O-Gehalt variiert von 0.05 bis 0.39 Gew% and wird im wesentlichen durch die Anzahl der Leerstellen in der Alkali-Position bestimmt. Die meisten Proben zeigen eine inhomogene Verteilung der H2O-Molekiile, deren H-H-Achse senkrecht [0001] orientiert ist. Das Absorptionsverhalten im Bereich der OH-Streckschwingungen ist durch vier Spektrentypen charakterisiert. Das vonBeran andRossman (1989) beschriebene Hochtemperatur-Spektrum eines thermisch behandelten Nephelins zeigen auch einige natürliche Proben metamorpher Paragenesen vom Somma-Vesuvio.
  相似文献   
5.
One of the main effects of supergene alteration of ore-bearing hydrothermal dolomite in areas surrounding secondary zinc orebodies (Calamine-type nonsulfides) in southwestern Sardinia (Italy) is the formation of a broad halo of Zn dolomite. The characteristics of supergene Zn dolomite have been investigated using scanning electron microscopy and qualitative energy-dispersive X-ray spectroscopy, thermodifferential analysis, and stable isotope geochemistry. The supergene Zn dolomite is characterized by variable amounts of Zn, and low contents of Pb and Cd in the crystal lattice. It is generally depleted in Fe and Mn relative to precursor hydrothermal dolomite (Dolomia Geodica), which occurs in two phases (stoichiometric dolomite followed by Fe-Mn-Zn-rich dolomite), well distinct in geochemistry. Mg-rich smithsonite is commonly associated to Zn dolomite. Characterization of Zn-bearing dolomite using differential thermal analysis shows a drop in temperature of the first endothermic reaction of dolomite decomposition with increasing Zn contents in dolomite. The supergene Zn dolomites have higher δ18O but lower δ13C values than hydrothermal dolomite. In comparison with smithsonite-hydrozincite, the supergene Zn dolomites have higher δ18O, but comparable δ13C values. Formation of Zn dolomite from meteoric waters is indicated by low δ13C values, suggesting the influence of soil-gas CO2 in near-surface environments. The replacement of the dolomite host by supergene Zn dolomite is interpreted as part of a multistep process, starting with a progressive “zincitization” of the dolomite crystals, followed by a patchy dedolomitization s.s. and potentially concluded by the complete replacement of dolomite by smithsonite.  相似文献   
6.
Hypogene Zn carbonate ores in the Angouran deposit,NW Iran   总被引:1,自引:0,他引:1  
The world-class Angouran nonsulfide Zn–Pb deposit is one of the major Zn producers in Iran, with resources estimated at about 18 Mt at 28% Zn, mainly in the form of the Zn carbonate smithsonite. This study aims to characterize these carbonate ores by means of their mineralogy and geochemistry, which has also been extended to the host rocks of mineralization and other local carbonate rock types, including the prominent travertines in the Angouran district, as well as to the local spring waters. Petrographical, chemical, and stable isotope (O, H, C, Sr) data indicate that the genesis of the Zn carbonate ores at Angouran is fairly distinct from that of other “classical” nonsulfide Zn deposits that formed entirely by supergene processes. Mineralization occurred during two successive stages, with the zinc being derived from a preexisting sulfide ore body. A first, main stage of Zn carbonates (stage I carbonate ore) is associated with both preexisting and subordinate newly formed sulfides, whereas a second stage is characterized by supergene carbonates (Zn and minor Pb) coexisting with oxides and hydroxides (stage II carbonate ore). The coprecipitation of smithsonite with galena, pyrite and arsenopyrite, as well as the absence of Fe- and Mn-oxides/hydroxides and of any discernible oxidation or dissolution of the sphalerite-rich primary sulfide ore, shows that the fluids responsible for the main, stage I carbonate ores were relatively reduced and close to neutral to slightly basic pH with high fCO2. Smithsonite δ18OVSMOW values from stage I carbonate ore range from 18.3 to 23.6‰, while those of stage II carbonate ore show a much smaller range between 24.3 and 24.9‰. The δ13C values are fairly constant in smithsonite of stage I carbonate ore (3.2–6.0‰) but show a considerable spread towards lower δ13CVPDB values (4.6 to −11.2‰) in stage II carbonate ore. This suggests a hypogene formation of stage I carbonate ore at Angouran from low-temperature hydrothermal fluids, probably mobilized during the waning stages of Tertiary–Quaternary volcanic activity in an environment characterized by abundant travertine systems throughout the whole region. Conversely, stage II carbonate ore is unambiguously related to supergene weathering, as evidenced by the absence of sulfides, the presence of Fe-Mn-oxides and arsenates, and by high δ18O values found in smithsonite II. The variable, but still relatively heavy carbon isotope values of supergene smithsonite II, suggests only a very minor contribution by organic soil carbon, as is generally the case in supergene nonsulfide deposits.  相似文献   
7.
Karst collapse sinkholes (KCS) are a peculiar karst morphology resulting from the collapse of the topographic surface caused by subsurface karstification. In the Southern Apennines these phenomena are not randomly distributed but concentrate in several zones, named High Sinkhole Concentration Areas (HSCA), showing peculiar geological, structural and hydrogeological conditions. Gas vents and mineral springs occur widely in these HSCA, and are often stricty related to the KCS. Starting from four representative areas, the aim of this study is to ascertain if there is a genetic link between peculiar mineralogical vs geochemical features of densely fractured/altered rocky masses in KCS, gas vents/springs occurrences and diffuse hypogenic karstification. By means of a multidisciplinary approach (geological/geomorphological, mineralogical and geochemical) we selected and analysed four different kinds of samples related to KCS, gas vent and spring occurrences: (i) altered to deeply altered limestones sampled in the sinkholes; (ii) unaltered limestones sampled in close proximity to sinkhole areas; (iii) gypsum-rich crusts/patinae, precipitated near to gas vents; (iv) gypsum- and calcite-rich precipitates occurring at springs or inside caves. Among neoformed non-carbonate minerals, gypsum is virtually ubiquitous, halides (fluorite, halite, sylvite) also occur in small to trace amounts. The mineralogical assemblages of the different samples show similarities and may also be compatible with hypogenic speleogenesis and with a process of alteration of the carbonate bedrock by means of uprising mineralizing fluids along structural discontinuities. Stable isotopic compositions (S, O) display strong variability in δ34S and δ18O for sulfate in the different areas, but a deep-seated sulfur source can be hypothesized for many of the studied KCS-related samples. This study has important implications for the relationships between areas of high concentration of sinkholes, regional fault systems, mechanical characteristics of rocks and the high seismicity typical of these areas of the Southern Apennines. © 2018 John Wiley & Sons, Ltd.  相似文献   
8.
Zambian willemite (Zn2SiO4) deposits occur in the metasedimentary carbonate rocks of the Proterozoic Katangan Supergroup. The most important orebodies are located around Kabwe and contain both sulphides and willemite in dolomites of low metamorphic grade. The Star Zinc and Excelsior prospects (Lusaka area), discovered in the early 1920s, occur in the metamorphic lithotypes of the late Proterozoic Zambezi Supracrustal sequence, which were deposited in a transtensional basin formed during the oblique collision of the Kalahari and Congo cratons. The deposits are hosted by the limestone and dolomitic marbles of the Cheta and Lusaka Formations. Structural analysis indicates that several fracture sets host the deposits, which may be genetically related to the Pan-African Mwembeshi dislocation zone (a major geotectonic boundary between the Lufilian Arc and the Zambezi Belt). In both prospects, willemite replaces the marbles and is found along joints and fissures with open-space filling textures and locally may develop colloform and vuggy fabrics as well. Silver as well as traces of germanium and cadmium have been detected within the willemite ore, and lead or zinc sulphides are scarce or absent. Calcite locally replaces willemite. Willemite is associated with specular hematite and franklinite and post-dates the Zn-spinel gahnite in the paragenesis. Genthelvite [Zn4Be3(SiO4)3S] occurs as a minor phase in irregular aggregates. The willemites from the Lusaka area, though Mn-poor, show green cathodoluminescence colours and bright green fluorescence in short-wave UV (as the high-temperature willemites in USA). Thermometric analyses of primary fluid inclusions in willemite yield homogenization temperatures that range from 160°C to 240°C and salinities of 8–16 wt.% equiv. NaCl. The homogenization temperatures suggest a hypogene–hydrothermal origin for the willemite concentrations. The geochemistry of fluid inclusion leachates suggests that the hydrothermal fluids were brines derived from highly evaporated seawater. Precise age constraints are currently lacking for the Lusaka area deposits, though the deposits are not deformed, indicating that they post-date the Lufilian orogeny (~520 Ma). The possibility of precursor ores exists; the gahnite–franklinite–willemite deposits could have been derived from a metamorphosed primary sulphide (or even nonsulphide) concentration that has subsequently been completely destroyed. However, there is no real evidence of such a primary source for the willemite mineral association. The Lusaka zinc ores may have been produced by an extensive hydrothermal system, with fluids discharging along basinal fracture zones controlled by the pre-Pan-African rifting stage. A paragenesis similar to that of the Lusaka prospects has been proposed to be a vector towards massive sulphide ores in several parts of the world; therefore, it is possible that these small willemite showings in Zambia may be part of a much bigger, and still unexplored, zinc province.  相似文献   
9.
Summary ?Post-magmatic garnets occur in volcanic breccias at the base of the Neapolitan Yellow Tuff (NYT) formation in the north-western area of the Phlegraean Fields. We report the results of a comprehensive study of these grandites. Garnet is found on the surfaces of tuffaceous blocks or inside their micropores, and is associated with sodalite, sanidine, marialite and amorphous silica. Garnet samples were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), powder and single-crystal X-ray diffraction (XRD) and infrared spectroscopy (IR). SEM observations on morphology showed typical dodecahedral and icositetrahedral habits. EPM analysis showed that they are close to grossular or andradite end members, with only moderate solid solution between them. X-ray study of single crystals showed cubic cell dimensions ao of 11.86 ? (grossular) and 12.04 ? (andradite). IR spectroscopy confirmed the presence of hydroxyls in coexisting garnet and sanidine, 0.06 wt% H2O (garnet) and 0.05–0.07 wt% H2O (sanidine), respectively. Well-crystallized sanidine of an earlier generation showed significantly higher water contents, in the range 0.13–0.23 wt% H2O. Type of occurrence and mineralogical features suggest a post-magmatic (pneumatolitic) genesis for these garnets. This is consistent with the physico-chemical processes linked to the eruptive dynamics of the breccias. Experimental studies of garnet synthesis at 550 °C and 2 kbar provide further support for this concept. Received January 16, 2002; accepted March 18, 2002  相似文献   
10.
The Angouran Zn-(Pb–Ag) deposit, Zanjan Province, NW Iran, is located within the central Sanandaj-Sirjan Zone of the Zagros orogenic belt. The deposit has proven and estimated resources of 4.7 Mt of sulfide ore at 27.7% Zn, 2.4% Pb, and 110 g/t Ag, and 14.6 Mt of oxidized carbonate ores at 22% Zn and 4.6% Pb. It is hosted by a metamorphic core complex that is unconformably overlain by a Neogene volcanic and evaporite-bearing marine to continental sedimentary sequence. The sulfide orebody, precursor to the significant nonsulfide ores, is located at the crest of an open anticline at the contact between Neoproterozoic to Cambrian footwall micaschists and hanging wall marbles. 40Ar–39Ar data on muscovite from mineralized and unaltered footwall micaschists suggest a rapid Mid-Miocene exhumation of the metamorphic basement (∼20 Ma) and yield an upper age constraint for mineralization. The fine-grained sulfide ore is massive, replacive, often brecciated, clearly postmetamorphic and dominated by Fe-poor sphalerite, with minor galena, pyrite, anhydrite, quartz, muscovite, dolomite, and rare calcite. Sphalerite contains Na–Ca–Cl brine inclusions (23–25 mass% total dissolved solids) with homogenization temperatures of 180–70°C. Fluid inclusion chemistry (Na–K–Li–Ca–Mg–Cl–Br), ore geochemistry, S, and Pb isotope data suggest that the Angouran sulfide ore formed by the interaction of modified, strongly evaporated Miocene seawater and the lithotypes of an exhumed metamorphic core complex. Minor contributions of metals from Miocene igneous rocks cannot be excluded. Mineralization occurred in a collisional intra-arc setting with high heat flow, probably during the transition from an extensional to a compressional regime. The Angouran deposit may represent a new type of low-temperature carbonate-hosted Zn–Pb ore that is distinct from Mississippi Valley type and sedimentary-exhalative deposits.Editorial handling: B. Lehmann  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号