首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   2篇
自然地理   1篇
  2019年   1篇
  2011年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A crucial point in any methodology for avalanche hazard assessment is the evaluation of avalanche distance exceeded probability, i.e., the annual probability that any assigned location along a given path is reached or exceeded by an avalanche. Typically this problem is faced by estimating the snow volume in the starting zone that is likely to accumulate an average every T years by statistical analysis of snowfall record, and then using this volume as input to an appropriately calibrated avalanche dynamics model to determine the runout distancesfor this design event. This methodology identifies the areas that canbe affected by an avalanche for the considered value of the return period (i.e. the average interval of time for a certain event to repeat itself), ¯T. However, it does not allow us to evaluate the actual avalanche encounter probability for any given point in the runout zone. In the present work this probability is computed by numerical integration of the expression P(x) = ∫0 P*(V)f(V) dV, where f is the probabilitydensity function (PDF) of the avalanche release volume V, and P* is the probability of the point x being reached or passed by an avalanche if the release volume is V; this latter probability is calculated by avalanche dynamics simulations. The procedure is implemented using a one-dimensional hydraulic-continuum avalanche dynamic model, calibrated on data from different Italian Alpine ranges, and is applied to a real world hazard mapping problem.  相似文献   
2.
The proto‐Paratethys Sea covered a vast area extending from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous and early Paleogene. Climate modelling and proxy studies suggest that Asian aridification has been governed by westerly moisture modulated by fluctuations of the proto‐Paratethys Sea. Transgressive and regressive episodes of the proto‐Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained. This hampers understanding of their driving mechanisms (tectonic and/or eustatic) and their contribution to Asian aridification. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed palaeoenvironmental analysis for the Paleogene proto‐Paratethys Sea incursions in the Tajik and Tarim basins. This enables us to identify the major drivers of marine fluctuations and their potential consequences on Asian aridification. A major regional restriction event, marked by the exceptionally thick (≤ 400 m) shelf evaporites is assigned a Danian‐Selandian age (ca. 63–59 Ma) in the Aertashi Formation. This is followed by the largest recorded proto‐Paratethys Sea incursion with a transgression estimated as early Thanetian (ca. 59–57 Ma) and a regression within the Ypresian (ca. 53–52 Ma), both within the Qimugen Formation. The transgression of the next incursion in the Kalatar and Wulagen formations is now constrained as early Lutetian (ca. 47–46 Ma), whereas its regression in the Bashibulake Formation is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian–Priabonian (ca. 39.7–36.7 Ma). We interpret the long‐term westward retreat of the proto‐Paratethys Sea starting at ca. 41 Ma to be associated with far‐field tectonic effects of the Indo‐Asia collision and Pamir/Tibetan plateau uplift. Short‐term eustatic sea level transgressions are superimposed on this long‐term regression and seem coeval with the transgression events in the other northern Peri‐Tethyan sedimentary provinces for the 1st and 2nd sea incursions. However, the 3rd sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto‐Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto‐Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification.  相似文献   
3.
Avalanche hazard mapping over large undocumented areas   总被引:3,自引:1,他引:2  
An innovative methodology to perform avalanche hazard mapping over large undocumented areas is herewith presented and discussed. The method combines GIS tools, computational routines, and statistical analysis in order to provide a “semi-automatic” definition of areas potentially affected by avalanche release and motion. The method includes two main modules. The first module is used to define zones of potential avalanche release, based on the consolidated relations on slope, morphology, and vegetation. For each of the identified zones of potential release, a second module, named Avalanche Flow and Run-out Algorithm (AFRA), provides an automatic definition of the areas potentially affected by avalanche motion and run-out. The definition is generated by a specifically implemented “flow-routing algorithm” which allows for the determination of flow behaviour in the track and in the run-out zone. In order to estimate the avalanche outline in the run-out zone, AFRA uses a “run-out cone”, which is a 3D projection of the angle of reach α. The α-value is evaluated by statistical analysis of historical data regarding extreme avalanches. Pre- and post-processing of the AFRA input/output data is done in an open source GIS environment (GRASS GIS). The method requires only a digital terrain model and an indication of the areas covered by forest as input parameters. The procedure, which allows rapid mapping of large areas, does not in principle require any site-specific historical information. Furthermore, it has proven to be effective in all cases where a preliminary cost-efficient analysis of the territories potentially affected by snow avalanche was needed.  相似文献   
4.
Barbolini  M.  Natale  L.  Savi  F. 《Natural Hazards》2002,25(3):225-244
Dynamical models for calculating snow avalanche motion have gained growingimportance in recent years for avalanche hazard assessment. Nevertheless, inherentuncertainties in their input-data specification, although well acknowledged, areusually not explicitly incorporated into the analysis and considered in the mappingresults. In particular, the estimate of avalanche release conditions is affected bystrong uncertainties when associated to a return period. These sources of error arenormally addressed through sensitivity analysis or conservative parameters estimate.However, each of these approaches has limitations in assessing the statistical implications of uncertainties.In the present paper the problem of release scenarios randomness is looked at following a Monte Carlo procedure. This statistical sampling-analysis method allows the evaluation of the probability distributions of relevant variables for avalanche hazard assessment – such as runout distance and impact pressure – once the release variables – essentially releasedepth and release length – are expressed in terms of probability distributions, accounting explicitly for inherent uncertainties in their definition. Both the theoretical framework of this procedure and its application to a real study case are presented. As initial step of this research in the present work the attention is mainly focused on flowing avalanches descending on open slopes. Therefore, the one-dimensional version of VARA dynamic models is usedfor avalanche simulations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号