首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   4篇
海洋学   1篇
天文学   3篇
自然地理   1篇
  2022年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  1995年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The significance and validity of integrating data obtained from a variety of analytical techniques to understand, elucidate and model kerogen's complex chemical structure is reported here using degradative (open and closed system pyrolysis, chemical oxidation), non-degradative (13C CP/MAS NMR) and optical (incident white light and blue light) methods. Seven Cambrian Alum Shale samples, ranging in maturity from immature to post-mature with respect to petroleum generation, were studied and were chosen for their simple geological history, uniform organic matter type and high organic carbon content. The Alum Shale kerogens, which primarily consist of algal organic matter, liberate low molecular weight gaseous and aromatic compounds on pyrolysis and give mostly branched dicarboxylic acids on chemical oxidation. 13C NMR spectroscopy shows that the Alum Shale kerogens are anomalously rich in oxygen-bearing functional groups (such as C = O, ArCO, CHO, CHxO), most of which apparently remain intact within the kerogen macro-molecule (KMM) through the diagenetic and catagenetic stages. Fragments released by different degradative techniques are quantified and the aromaticity (fa), O/C and relative proportions of various carbon types estimated by 13C NMR. A synthesis of these data has allowed us to better understand the chemistry of the Alum Shale kerogen.  相似文献   
2.

Debris flow has caused severe human casualties and economic losses in landslide-prone areas around the globe. A comprehensive understanding of the morphology and deposition mechanisms of debris flows is crucial to delineate the extent of a debris flow hazard. However, due to inherent complex field topography and varying compositions of the flowing debris, coupled with a lack of fundamental understanding about the factors controlling the geomaterial flow, interparticle interactions and its final settlement resulted in a limited understanding of the flow behaviour of the landslide debris. In this study, a physical model was set up in the laboratory to simulate and calibrate the debris flow using PFC, a distinct element modelling-based software. After calibration, a case study of the Varunavat landslide was taken to validate the developed numerical model. Following validation with an acceptable level of confidence, several models were generated to evaluate the effect of slope height, slope angle, slope profile, and grain size distribution of the dislodged geomaterial in the rheological properties of debris flow. Both qualitative and quantitative analysis of the landslide debris flow was performed. Finally, the utility of retaining wall and their effect on debris flow is also studied with different retaining wall positions along the slope surface.

  相似文献   
3.
Copper slag is a by-product obtained from production of copper metal. As copper slag contains silica and alumina, it may exhibit pozzolanic property, and hence it may be re-use in ground improvement applications as a partial replacement of cement. Present study evaluates systematically the possible pozzolanic property of copper slag as well as studies the effect of copper slag on engineering properties of cement-treated clay. X-rays diffraction method was employed to assess the possible pozzolanic property of copper slag. Effect of copper slag on engineering properties (i.e. compressive strength and compressibility) of cement-treated clay was studied with samples prepared with constant water content and workability. The test results showed that with sufficient curing time and at constant workability, the compressive strength of cement-treated clay was found to be increased with increasing amount of copper slag at high cement content but the compressive strength remained the same with increasing amount of copper slag at low cement content. Compressibility of cement-treated clay was found to be unchanged with increasing amount of copper slag. It was concluded that copper slag can be used as partial replacement of cement in treating soft marine clay.  相似文献   
4.
As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.  相似文献   
5.
The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10?–?24. We found that the autocorrelation width \(A_{\mathrm{w}} ^{n}\) of SC \(n\) during the second half of its ascending phase correlates well with the modified length that is defined as \(T_{\mathrm{cy}}^{n+2} - T_{\mathrm{a}}^{n}\). Here \(T_{\mathrm{cy}}^{n+2}\) and \(T_{ \mathrm{a}}^{n}\) are the length and ascent time of SCs \(n+2\) and \(n\), respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs (i.e., \(n+1\), \(n+2\)) are readily available at the time of the peak of SC \(n\). The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).  相似文献   
6.
Since the 1990s, Indian farmers, supported by the government, have partially shifted from surface-water to groundwater irrigation in response to the uncertainty in surface-water availability. Water-management authorities only slowly began to consider sustainable use of groundwater resources as a prime concern. Now, a reliable integration of groundwater resources for water-allocation planning is needed to prevent aquifer overexploitation. Within the 11,000-km2 Musi River sub-basin (South India), human interventions have dramatically impacted the hard-rock aquifers, with a water-table drop of 0.18 m/a over the period 1989–2004. A fully distributed numerical groundwater model was successfully implemented at catchment scale. The model allowed two distinct conceptualizations of groundwater availability to be quantified: one that was linked to easily quantified fluxes, and one that was more expressive of long-term sustainability by taking account of all sources and sinks. Simulations showed that the latter implied 13 % less available groundwater for exploitation than did the former. In turn, this has major implications for the existing water-allocation modelling framework used to guide decision makers and water-resources managers worldwide.  相似文献   
7.
This paper deals with the collapse and expansion of relativistic anisotropic self-gravitating source. The field equations for non-radiating and non-static plane symmetric anisotropic source have been evaluated. The non-radiating property of the fluid leads to evaluation of the metric functions. We have classified the dynamical behavior of gravitational source as expansion and collapse. The collapse in this case leads to the final stage without the formation of apparent horizons while such horizons exists in case of spherical anisotropic source. The matching of interior and exterior regions provides the continuity of masses over the boundary surface.  相似文献   
8.
A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length \(T_{\mathrm{cy}}\) is divided into five equal parts of duration \(T_{\mathrm{cy}}/5\). Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the \(n\)th SC starting from \(n=10\,\mbox{--}\,23\). We find that the Shannon entropy during the ending phase (P5) of the \(n\)th SC can be efficiently used to predict the peak smoothed sunspot number of the \((n+1)\)th SC, i.e. \(S_{\mathrm{max}}^{n+1}\). The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.  相似文献   
9.
Time-series observations were conducted off Visakhapatnam, central west coast of Bay of Bengal, from October 2007 to April 2009 to examine the influence of physical and atmospheric processes on water column nutrients biogeochemistry. The thermal structure displayed inversions of 0.5 to 1.0° C during winter and were weaker in summer. The water column was vertically stratified during the entire study period and was stronger during October–November 2007 and August–December 2008 compared to other study periods. High concentrations of chlorophyll-a and nutrients were associated with the extreme atmospheric events. The strong relationship of nutrients with salinity indicates that physical processes, such as circulation, mixing and river discharge, have a significant control on phytoplankton blooms in the coastal Bay of Bengal. Phosphate seems to be a controlling nutrient during winter whereas availability of light and suspended matter limits production in summer. Formation of low oxygen conditions were observed in the bottom waters due to enhanced primary production by extreme atmospheric events; however, re-oxygenation of bottom waters through sinking of oxygen-rich surface waters by a warm core (anticyclonic) eddy led to its near recovery. This study reveals that atmospheric and physical processes have significant impacts on the water column biogeochemistry in the coastal Bay of Bengal.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号