首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   1篇
地质学   4篇
  2020年   1篇
  2018年   3篇
  2014年   1篇
  2010年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A written computer programme to estimate the box fractal dimension (DB) is verified by estimating DB of the triadic Koch curve for which the theoretical D is known. The influence of a number of input parameters of the box-counting method on the accuracy of estimated DB is evaluated using the same Koch curve. The employed size range of the applied box networks was found to be the parameter which has the strongest influence on the accuracy of estimated DB. This indicated the importance of finding the range of self-similarity or self-affinity for the object considered to select the proper range for the box sizes and, in turn, to obtain accurate estimates of DB. By calculating DB for different block sizes sampled from three generated two-dimensional joint patterns, it is shown that DB can capture the combined effect of joint-size distribution and joint density on the statistical homogeneity of rock masses. The spatial variation of DB along a 350 m stretch of a tunnel in the shiplock area of the Three Gorges dam site is computed using the joint data mapped on the walls and the roof of the tunnel. This spatial variation of DB is used, along with the visual geological evaluation of the joint trace maps of the tunnel, in making decisions about statistical homogeneity of the rock mass around the tunnel. The results obtained on statistically homogeneous regions were found to be quite similar to the results obtained from a previous statistical homogeneity investigation which incorporated the effect of number of joint sets and their orientation distributions, but not the spatial variation of DB. It is recommended that the spatial variation of DB is used, along with the results of other methods such as contingency table analysis and equal area plots, which incorporate the effect of joint orientation distribution, in addition to the geology of the site, in determining the statistically homogeneous regions of jointed rock masses.  相似文献   
2.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   
3.
It is noticed that few geophysical studies have been carried out to decipher the crustal structure of southwestern part of the Northeast India comprising of Tripura fold belt and Bengal basin as compared to the Shillong plateau and the Brahmaputra basin. This region has a long history of seismicity that is still continuing. We have determined first-order crustal features in terms of Moho depths (H) and average VP/VS ratios (κ) using H-κ stacking technique. The inversion of receiver functions data yields near surface thick sedimentary layer in the Bengal basin, which is nearly absent in the Shillong plateau and Tripura fold belt. Our result suggests that the crust is thicker (38–45 km) in the Tripura fold belt region with higher shear-wave velocity in the lower crust than the Shillong plateau. The distribution of VP/VS ratio indicates heterogeneity throughout the whole region. While low to medium value of Poisson’s ratio (1.69–1.75) indicates the presence of felsic crust in the Shillong plateau of the extended Indian Archean crust. The medium to high values of VP/VS ratio (> 1.780) in the Bengal basin and the Tripura fold belt region represent mafic crust during the formation of the Bengal delta and the Tripura fold belt creation in the Precambrian to the Permian age. The depth of the sediments in the Bengal basin is up to 8 km on its eastern margin, which get shallower toward its northeastern and southeastern margins.  相似文献   
4.
Theoretical and Applied Climatology - Ocean interactions are known to play a major role in the modulation of intraseasonal variability. The role of sea surface temperature (SST) and major oceanic...  相似文献   
5.
The rivers in Nepal are classified in terms of geographical regions but a more scientific classification such as on the ba-sis of morphology is clearly lacking. This study was done in 9 rivers namely Jhikhukhola of the Koshi system, Aandhikhola, Arungkhola, East Rapti, Karrakhola, Seti and main channel Narayani of the Gandaki system, and two independent systems within Nepal, Bagmati and Tinau. Among the morphologies, river bed or the substratum was taken as the main variable for the analysis which was categ...  相似文献   
6.
Mineralogy and Petrology - The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the...  相似文献   
7.
The Bathani volcanic and volcano-sedimentary (BVS) sequence is a volcanic and volcano-sedimentary sequence, best exposed near Bathani village in Gaya district of Bihar. It is located in the northern fringe of the Chotanagpur Granite Gneiss Complex (CGGC). The volcano-sedimentary unit comprises of garnet-mica schist, rhyolite, tuff, banded iron formation (BIF) and chert bands with carbonate rocks as enclaves within the rhyolite and the differentiated volcanic sequence comprises of rhyolite, andesite, pillow basalt, massive basalt, tuff and mafic pyroclasts. Emplacement of diverse felsic and mafic rocks together testifies for a multi-stage and multi-source magmatism for the area. The presence of pillow basalt marks the eruption of these rocks in a subaqueous environment. Intermittent eruption of mafic and felsic magmas resulted in the formation of rhyolite, mafic pyroclasts, and tuff. Mixing and mingling of the felsic and mafic magmas resulted in the hybrid rock andesite. Granites are emplaced later, cross-cutting the volcanic sequence and are probably products of fractional crystallization of basaltic magma. The present work characterizes the geochemical characteristics of the magmatic rocks comprising of basalt, andesite, rhyolite, tuff, and granite of the area. Tholeiitic trend for basalt and calc-alkaline affinities of andesite, rhyolite and granite is consistent with their generation in an island arc, subduction related setting. The rocks of the BVS sequence probably mark the collision of the northern and southern Indian blocks during Proterozoic period. The explosive submarine volcanism may be related to culmination of the collision of the aforementioned blocks during the Neoproterozoic (1.0 Ga) as the Grenvillian metamorphism is well established in various parts of CGGC.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号