首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
地球物理   11篇
地质学   2篇
海洋学   1篇
自然地理   6篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2011年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有20条查询结果,搜索用时 484 毫秒
1.
Flooding is a serious hazard across Europe, with over 200 major floods documented in the last two decades. Over this period, flood management has evolved, with a greater responsibility now placed on at-risk communities to understand their risk and take protective action to develop flood resilience. Consequently, communicating flood risk has become an increasingly central part of developing flood resilience. However, research suggests that current risk communications have not resulted in the intended increase in awareness, or behavioural change. This paper explores how current risk communications are used by those at risk, what information users desire and how best this should be presented. We explore these questions through a multi-method participatory experiment, working together with a competency group of local participants in the town of Corbridge, Northumberland, the UK. Our research demonstrates that current risk communications fail to meet user needs for information in the period before a flood event, leaving users unsure of what will happen, or how best to respond. We show that participants want information on when and how a flooding may occur (flood dynamics), so that they can understand their risk and feel in control of their decisions on how to respond. We also present four prototypes which translate these information needs into new approaches to communicating flood risk. Developed by the research participants, these proposals meet their information needs, increase their flood literacy and develop their response capacity. The findings of the research have implications for how we design and develop future flood communications, but also for how we envisage the role of flood communications in developing resilience at a community level.  相似文献   
2.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
4.
L J Bracken  E A Oughton 《Area》2009,41(4):371-373
  相似文献   
5.
Rainfall and flood data are relatively sparse in semi‐arid areas; hence there have been relatively few investigations into the relationships between rainfall inputs and flood generation in these environments. Previous work has shown that flood properties are influenced by a combination of precipitation characteristics including amount, intensity, duration and spatial distribution. Therefore floods may be produced by high intensity, short duration storms, or longer duration, low intensity rainfall. Most of this research has been undertaken in small catchments in either hyper‐arid or relatively high rainfall Mediterranean climates. This paper presents results from a 6 year data record in south‐east Spain from research conducted in two basins, the Rambla Nogalte (171 km2) and the Rambla de Torrealvilla (200 km2). Data cover an area of approximately 500 km2 and an annual average rainfall of 300 mm. At coarse temporal resolutions gauges spread over large areas record similar patterns of rainfall, although spells of rain show much more complexity; pulses of rain within storms can vary considerably in total rainfall, intensity and duration over the same area. The analysis for south‐east Spain shows that most storms occur over a period of less than 24 h, but that the number of rainfall events declines as the duration exceeds 8 h. This is at odds with data on floods for the study area suggesting that they are produced by storms lasting longer than 18 h. However, one flood event was produced by a very short (15 min) storm with high intensity rainfall. Most floods tended to occur in May/June or September, which coincides with wetter months of the year (September, October, December and May). Floods are also more highly related to the total rainfall occurring in a spell of rain, than to intensity. The complexity of storm rainfall increases with the storm total, which makes it difficult to generalize on the importance of rainfall intensity for flood generation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
6.
Louise Bracken  Emma Mawdsley 《Area》2004,36(3):280-286
Fieldwork in geography has come under close scrutiny from feminist and postcolonial scholars in recent years. In relation to physical geography, commentators have pointed to a range of practices and images (notably the 'heroic', masculinist 'ideal') that have acted to deter and exclude women, from undergraduates to senior academics. For some, fieldwork is one of the key sites of gender discrimination for women in physical geography. This paper starts from a position of agreement with many of these critiques, but also seeks to 'reclaim' some more positive accounts and perspectives on the subject. In doing so, it aims to critique and disrupt the dominant image of physical geography fieldwork as essentially a masculinist endeavour, and encourage a wider view of the challenges and pleasures of fieldwork for women in physical geography.  相似文献   
7.
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
Conventional roughness–resistance relationships developed for pipe and open‐channel flows cannot accurately describe shallow overland flows over natural rough surfaces. This paper develops a new field methodology combining terrestrial laser scanning (TLS) and overland flow simulation to provide a high‐resolution dataset of surface roughness and overland flow hydraulics as simulated on natural bare soil surfaces. This method permits a close examination of the factors controlling flow velocity and a re‐evaluation of the relationship between surface roughness and flow resistance. The aggregate effect of flow dynamics, infiltration and depression storage on retarding the passage of water over a surface is important where runoff‐generating areas are distant from well‐defined channels. Experiments to separate these effects show that this ‘effective resistance’ is dominated by surface roughness. Eight measurements of surface roughness are found to be related to flow resistance: standard deviation of elevations, inundation ratio, pit density (measured both perpendicular and parallel to the flow direction), slope, median depth, skewness of the depth distribution and frontal area. Hillslope position is found to affect the significant roughness measures. In contrast, infiltration rate has little effect on the velocity of water fronts advancing over the soil surfaces examined here and the effect of depression storage is limited. Overland flow resistance is depth dependent where complex microtopographic structures are progressively inundated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.
A major challenge for geomorphologists is to scale up small‐magnitude processes to produce landscape form, yet existing approaches have been found to be severely limited. New ways to scale erosion and transfer of sediment are thus needed. This paper evaluates the concept of sediment connectivity as a framework for understanding processes involved in sediment transfer across multiple scales. We propose that the concept of sediment connectivity can be used to explain the connected transfer of sediment from a source to a sink in a catchment, and movement of sediment between different zones within a catchment: over hillslopes, between hillslopes and channels, and within channels. Using fluvial systems as an example we explore four scenarios of sediment connectivity which represent end‐members of behaviour from fully linked to fully unlinked hydrological and sediment connectivity. Sediment‐travel distance – when combined with an entrainment parameter reflecting the frequency–magnitude response of the system – maps onto these end‐members, providing a coherent conceptual model for the upscaling of erosion predictions. This conceptual model could be readily expanded to other process domains to provide a more comprehensive underpinning of landscape‐evolution models. Thus, further research on the controls and dynamics of travel distances under different modes of transport is fundamental. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
This paper focuses on hillslope runoff and sediment transport within two catchments in southeast Spain. Five monitoring sites were established on hillslope concavities throughout the two catchments. The techniques used were mini-crest stage recorders, spray-painted lines, sediment traps and tipping bucket rain gauges (established during previous research). Results show that a storm event in the Rambla Nogalte on 30 June 2002 of 83.0 mm was responsible for a maximum runoff depth of 12 cm and a maximum hillslope sediment transport of 1886 cm3 m−1. The same storm in the Rambla de Torrealvilla produced 53.4 mm of rainfall on the 1 July 2002, had a maximum runoff depth of 26 cm and resulted in 2311 cm3 m−1 of sediment transport. There is evidence to suggest that measured sediment transport is related to runoff and a qualitative estimate of Morphological Runoff Zones (MRZ). Sediment transport and depth of runoff varied dramatically with lithology; marl sites produced most runoff and sediment transport, followed by the sites of mixed red and blue schist, then blue schist. These results are important for understanding the behaviour of slopes and show that for short lived storms with high, but not rare, rainfall intensities and total rainfall amounts, runoff can cause significant hillslope sediment transport in semi-arid areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号