首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   12篇
  国内免费   7篇
测绘学   2篇
大气科学   21篇
地球物理   42篇
地质学   112篇
海洋学   23篇
天文学   30篇
自然地理   25篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   12篇
  2019年   7篇
  2018年   10篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   23篇
  2012年   11篇
  2011年   24篇
  2010年   10篇
  2009年   20篇
  2008年   8篇
  2007年   10篇
  2006年   12篇
  2005年   7篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1967年   2篇
排序方式: 共有255条查询结果,搜索用时 593 毫秒
1.
2.
Abstract— The osmium isotope ratios and platinum‐group element (PGE) concentrations of impact‐melt rocks in the Chesapeake Bay impact structure were determined. The impact‐melt rocks come from the cored part of a lower‐crater section of suevitic crystalline‐clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact‐melt rocks range from 0.151 to 0.518. The rhenium and platinum‐group element (PGE) concentrations of these rocks are 30–270x higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact‐melt rocks. Because the PGE abundances in the impact‐melt rocks are dominated by the target materials, interelemental ratios of the impact‐melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact‐melt rocks include a bulk meteoritic component of 0.01–0.1% by mass. Several impact‐melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%–0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01–0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact‐melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact‐melt rocks, and 2) variable fractionations of PGE during syn‐ to post‐impact events.  相似文献   
3.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil.  相似文献   
4.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

5.
Ion-microprobe U–Pb analyses of 589 detrital zircon grains from 14 sandstones of the Alborz mountains, Zagros mountains, and central Iranian plateau provide an initial framework for understanding the Neoproterozoic to Cenozoic provenance history of Iran. The results place improved chronological constraints on the age of earliest sediment accumulation during Neoproterozoic–Cambrian time, the timing of the Mesozoic Iran–Eurasia collision and Cenozoic Arabia–Eurasia collision, and the contribution of various sediment sources of Gondwanan and Eurasian affinity during opening and closure of the Paleotethys and Neotethys oceans. The zircon age populations suggest that deposition of the extensive ~ 1 km-thick clastic sequence at the base of the cover succession commenced in latest Neoproterozoic and terminated by Middle Cambrian time. Comparison of the geochronological data with detrital zircon ages for northern Gondwana reveals that sediment principally derived from the East African orogen covered a vast region encompassing northern Africa and the Middle East. Although most previous studies propose a simple passive-margin setting for Paleozoic Iran, detrital zircon age spectra indicate Late Devonian–Early Permian and Cambrian–Ordovician magmatism. These data suggest that Iran was affiliated with Eurasian magmatic arcs or that rift-related magmatic activity during opening of Paleotethys and Neotethys was more pronounced than thought along the northern Gondwanan passive-margin. For a Triassic–Jurassic clastic overlap assemblage (Shemshak Formation) in the Alborz mountains, U–Pb zircon ages provide chronostratigraphic age control requiring collision of Iran with Eurasia by late Carnian–early Norian time (220–210 Ma). Finally, Cenozoic strata yield abundant zircons of Eocene age, consistent with derivation from arc magmatic rocks related to late-stage subduction and/or breakoff of the Neotethys slab. Together with the timing of foreland basin sedimentation in the Zagros, these detrital zircon ages help bracket the onset of the Arabia–Eurasia collision in Iran between middle Eocene and late Oligocene time.  相似文献   
6.
Water surface profiles and horizontal and vertical water particle velocity components have been measured to investigate the properties of intermediate depth waves generated in the laboratory. The data has been compared with linear wave theory. It was found that linear theory predicted the attenuation of velocity field with depth successfully and that it overestimates both components of velocity slightly.  相似文献   
7.
8.
A Cordilleran model for the evolution of Avalonia   总被引:2,自引:0,他引:2  
Striking similarities between the late Mesoproterozoic–Early Paleozoic record of Avalonia and the Late Paleozoic–Cenozoic history of western North America suggest that the North American Cordillera provides a modern analogue for the evolution of Avalonia and other peri-Gondwanan terranes during the late Precambrian. Thus: (1) The evolution of primitive Avalonian arcs (proto-Avalonia) at 1.2–1.0 Ga coincides with the amalgamation of Rodinia, just as the evolution of primitive Cordilleran arcs in Panthalassa coincided with the Late Paleozoic amalgamation of Pangea. (2) The development of mature oceanic arcs at 750–650 Ma (early Avalonian magmatism), their accretion to Gondwana at ca. 650 Ma, and continental margin arc development at 635–570 Ma (main Avalonian magmatism) followed the breakup of Rodinia at ca. 755 Ma in the same way that the accretion of mature Cordilleran arcs to western North America and the development of the main phase of Cordilleran arc magmatism followed the Early Mesozoic breakup of Pangea. (3) In the absence of evidence for continental collision, the diachronous termination of subduction and its transition to an intracontinental wrench regime at 590–540 Ma is interpreted to record ridge–trench collision in the same way that North America's collision with the East Pacific Rise in the Oligocene led to the diachronous initiation of a transform margin. (4) The separation of Avalonia from Gondwana in the Early Ordovician resembles that brought about in Baja California by the Pliocene propagation of the East Pacific Rise into the continental margin. (5) The Late Ordovician–Early Silurian sinistral accretion of Avalonia to eastern Laurentia emulates the Cenozoic dispersal of Cordilleran terranes and may mimic the paths of future terranes transferred to the Pacific plate.This close similarity in tectonothermal histories suggests that a geodynamic coupling like that linking the evolution of the Cordillera with the assembly and breakup of Pangea, may have existed between Avalonia and the late Precambrian supercontinent Rodinia. Hence, the North American Cordillera is considered to provide an actualistic model for the evolution of Avalonia and other peri-Gondwanan terranes, the histories of which afford a proxy record of supercontinent assembly and breakup in the late Precambrian.  相似文献   
9.
10.
Recent studies have shown that mercury (Hg) levels in many fish from remote lakes exceed the recommended guidelines for human consumption. Most of these studies conclude that the source of contamination lies in the atmosphere. Kejimkujik National Park (KNP), Nova Scotia, Canada, is considered to be a pristine ecosystem in which fish and loon Hg levels are anomalously high. Studies in the park have shown that atmospheric Hg concentrations may not be high enough to account for the Hg levels in the biota, indicating that the park may be an unusual system in terms of Hg distribution and migration. In an attempt to summarise and synthesise the numerous Hg data sets which have been produced in the park over the last 5-10 years, a geographic information systems (GIS) approach was used to create a common database using the watersheds in the park as the common parameter. By using a GIS database, new relationships and correlations are established and the spatial distribution of Hg levels is more readily evaluated and quantified. The results indicate that geological sources of Hg, arising from biotite-rich granite rocks, may play a larger role in the contamination of the park than previously thought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号