首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   744篇
  免费   35篇
  国内免费   5篇
测绘学   47篇
大气科学   56篇
地球物理   181篇
地质学   240篇
海洋学   32篇
天文学   143篇
综合类   5篇
自然地理   80篇
  2023年   5篇
  2022年   6篇
  2021年   16篇
  2020年   16篇
  2019年   22篇
  2018年   24篇
  2017年   24篇
  2016年   32篇
  2015年   26篇
  2014年   27篇
  2013年   60篇
  2012年   40篇
  2011年   32篇
  2010年   29篇
  2009年   49篇
  2008年   31篇
  2007年   40篇
  2006年   34篇
  2005年   38篇
  2004年   29篇
  2003年   25篇
  2002年   24篇
  2001年   20篇
  2000年   19篇
  1999年   12篇
  1998年   5篇
  1997年   9篇
  1996年   9篇
  1995年   8篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
  1970年   1篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
1.
The Northland region of New Zealand includes numerous high-value, macrophyte-dominated dune lakes. Recent water policy reforms offer limited guidance on managing for aquatic macrophytes. In addition, dune lake histories are poorly known as regular monitoring dates to 2005 AD. Here, ca. 4000 years of lake functional behaviour is reconstructed from sedimentary archives in two Northland dune lakes (Humuhumu and Rotokawau). Results demonstrated that macrophyte dominance is sensitive to catchment erosion and hydrological drawdown. Degradation of macrophyte communities occurred in the nineteenth and twentieth centuries, earlier at Lake Humuhumu than Lake Rotokawau (post-1880 AD and post-1930 AD, respectively). In both lakes, increased erosional influx reduced macrophyte productivity, before later increases to wider trophic state (post-1970 AD). Lake-level decline is linked to increased nutrient loading at Lake Rotokawau but less so, Lake Humuhumu which is more strongly groundwater-fed. In Northland dune lakes, water-level reduction and erosional influx from land use have driven macrophyte degradation.  相似文献   
2.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   
3.
4.
5.
Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.  相似文献   
6.
Detailed field sampling and analyses and laboratory-based diffusion-cell experiments were used in conjunction with 3-D reactive transport modeling (MODFLOW and MT3D99) to quantify the fate and long-term (10 ka) transport of As in the Rabbit Lake In-pit Tailings Management Facility (RLITMF), northern Saskatchewan, Canada. The RLITMF (300 m × 425 m × 90 m thick) was engineered to ensure solute transport within the RLITMF is dominated by diffusion. Concentrations of As in the tailings pore fluids ranged from 0.24 to 140 mg/L (n = 43). Arsenic speciation analyses indicate 90% of this arsenic exists as As5+. This observation is supported by pH–Eh measurements of pore fluids (n = 135). Geochemical analyses yielded a strong inverse correlation between the Fe/As molar ratio in the tailings solids and the corresponding concentration of dissolved As, which is attributed to the adsorption of As to secondary 2-line ferrihydrite present in the tailings. Diffusion-cell testing yielded values for the effective diffusion coefficient, sorption coefficient, and effective porosity of As in the tailings of 4.5 × 10−10 m2/s, 2–4 cm3/g and 0.36, respectively. Reactive transport simulations using the field and laboratory data show adsorption of As to the tailings and diffusive transport of dissolved As in the tailings should reduce the source term concentration of As to between 40% and 70% of the initial concentrations over the 10 ka simulation period. Based on these simulations, the As concentrations in the regional groundwater, 50 m down gradient of the tailings facility, should be maintained at background concentrations of 0.001 mg/L over the 10 ka period. These findings suggest the engineered in-pit disposal of U mine tailings can provide long-term protection for the local groundwater regime from As contamination.  相似文献   
7.
The Antarctic Polar Front is a complex set of meandering jets, which appear to support enhanced primary productivity. The US Joint Global Ocean Flux Study conducted a series of survey and process studies in part to study the processes regulating primary productivity in this high nutrient, low chlorophyll region. We deployed a set of surface velocity drifters, some of which were equipped with bio-optical sensors, to study the temporal and spatial scales of biological and physical processes in the Antarctic Polar Frontal Zone. There were two primary sets of deployments: November 1997 before the spring bloom and January 1998 after the spring bloom. The November deployment revealed a strong spring bloom that lasted about 10 days. In late spring, when incoming solar radiation began to increase, the vertical motions associated with the meanders strongly affected the accumulation of phytoplankton biomass, primarily through their impact on light availability. Weaker meandering was observed in the January deployment, and chlorophyll values remained relatively constant. As the bloom began to decay, it appears that nutrient availability became more important in regulating phytoplankton photosynthesis. Some of the drifters in the November deployment were deployed in coherent clusters, thus allowing us to calculate vertical velocities associated with the meanders. Estimates of fluorescence/chlorophyll suggest that areas of upwelling and downwelling alternately decrease and increase photosynthetic stress, perhaps as a result of changes in the availability of iron or light during the formation of the bloom.  相似文献   
8.
Methodology and use of tensor invariants for satellite gravity gradiometry   总被引:2,自引:1,他引:1  
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.  相似文献   
9.
We develop and apply an efficient strategy for Earth gravity field recovery from satellite gravity gradiometry data. Our approach is based upon the Paige-Saunders iterative least-squares method using QR decomposition (LSQR). We modify the original algorithm for space-geodetic applications: firstly, we investigate how convergence can be accelerated by means of both subspace and block-diagonal preconditioning. The efficiency of the latter dominates if the design matrix exhibits block-dominant structure. Secondly, we address Tikhonov-Phillips regularization in general. Thirdly, we demonstrate an effective implementation of the algorithm in a high-performance computing environment. In this context, an important issue is to avoid the twofold computation of the design matrix in each iteration. The computational platform is a 64-processor shared-memory supercomputer. The runtime results prove the successful parallelization of the LSQR solver. The numerical examples are chosen in view of the forthcoming satellite mission GOCE (Gravity field and steady-state Ocean Circulation Explorer). The closed-loop scenario covers 1 month of simulated data with 5 s sampling. We focus exclusively on the analysis of radial components of satellite accelerations and gravity gradients. Our extensions to the basic algorithm enable the method to be competitive with well-established inversion strategies in satellite geodesy, such as conjugate gradient methods or the brute-force approach. In its current development stage, the LSQR method appears ready to deal with real-data applications.  相似文献   
10.
Oliver K. Manuel 《Icarus》1980,41(2):312-315
Isotopically anomalous xenon in chondrites is closely associated with low-Z noble gases, but there is no helium (or neon) in the noble gas component with normal xenon. The correlation of elemental and isotopic heterogeneities in meteoritic noble gases places stringent limits on the origin of isotopically anomalous elements in meteorites and on the formation of the solar system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号