首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Parameter calibration is one of the most problematic phases of numerical modeling since the choice of parameters affects the model’s reliability as far as the physical problems being studied are concerned. In some cases, laboratory tests or physical models evaluating model parameters cannot be completed and other strategies must be adopted; numerical models reproducing debris flow propagation are one of these. Since scale problems affect the reproduction of real debris flows in the laboratory or specific tests used to determine rheological parameters, calibration is usually carried out by comparing in a subjective way only a few parameters, such as the heights of soil deposits calculated for some sections of the debris flows or the distance traveled by the debris flows using the values detected in situ after an event has occurred. Since no automatic or objective procedure has as yet been produced, this paper presents a numerical procedure based on the application of a statistical algorithm, which makes it possible to define, without ambiguities, the best parameter set. The procedure has been applied to a study case for which digital elevation models of both before and after an important event exist, implicating that a good database for applying the method was available. Its application has uncovered insights to better understand debris flows and related phenomena.  相似文献   
2.
Brezzi  Lorenzo  Bisson  Alberto  Pasa  Davide  Cola  Simonetta 《Landslides》2021,18(6):2143-2158

A large number of landslides occur in North-Eastern Italy during every rainy period due to the particular hydrogeological conditions of this area. Even if there are no casualties, the economic losses are often significant, and municipalities frequently do not have sufficient financial resources to repair the damage and stabilize all the unstable slopes. In this regard, the research for more economically sustainable solutions is a crucial challenge. Floating composite anchors are an innovative and low-cost technique set up for slope stabilization: it consists in the use of passive sub-horizontal reinforcements, obtained by coupling a traditional self-drilling bar with some tendons cemented inside it. This work concerns the application of this technique according to the observational method described within the Italian and European technical codes and mainly recommended for the design of geotechnical works, especially when performed in highly uncertain site conditions. The observational method prescribes designing an intervention and, at the same time, using a monitoring system in order to correct and adapt the project during realization of the works on the basis of new data acquired while on site. The case study is the landslide of Cischele, a medium landslide which occurred in 2010 after an exceptional heavy rainy period. In 2015, some floating composite anchors were installed to slow down the movement, even if, due to a limited budget, they were not enough to ensure the complete stabilization of the slope. Thanks to a monitoring system installed in the meantime, it is now possible to have a comparison between the site conditions before and after the intervention. This allows the evaluation of benefits achieved with the reinforcements and, at the same time, the assessment of additional improvements. Two stabilization scenarios are studied through an FE model: the first includes the stabilization system built in 2015, while the second evaluates a new solution proposed to further increase the slope stability.

  相似文献   
3.
Brezzi  Lorenzo  Gabrieli  Fabio  Cola  Simonetta 《Acta Geotechnica》2020,15(3):695-714
Acta Geotechnica - The collapse test with granular or cohesive materials known as ‘slump test’ is a simple, small-scale experiment. It can be used to study the rheology of soil masses...  相似文献   
4.
An analytical model, which aims at reproducing the response of a large‐scale dynamic testing facility, that is a system composed of the specimen/shaking table/reaction‐mass/airbags/dampers/soil is developed. The Lagrangian of the system is derived, under the assumption of large displacements and rotations. A set of four nonlinear differential equations is obtained and solved with numerical methods. Preliminary verifications of the derived model are carried out by reproducing both well‐known results in the literature as well as those of a lumped model employed in the design of an existing dynamic testing facility. The case‐study for validating the nonlinear equations of motion is the shaking table of the EUCENTRE Laboratory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号