首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
大气科学   1篇
地质学   9篇
天文学   3篇
自然地理   1篇
  2014年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1976年   1篇
排序方式: 共有14条查询结果,搜索用时 844 毫秒
1.
2.
We present results of three sand-box experiments that model the association between tectonic accretion and sedimentation in a forearc basin. Experimental sedimentation occurs step by step in the forearc basin during shortening of the sand wedge. In each experiment, the development of the accretionary wedge leads to the formation of a major backthrust zone. This major deformation zone accounts for the thickening in the rear part of the wedge. In natural settings this tectonic bulge dams sediments that are transported toward the trench from mountainous terrain behind the forearc. We test the variation of friction along the déollement and note the following: (1) shortening of a low-friction wedge involves a mechanical balance between forethrusts and backthrust propagation and this balance is recorded by the sedimentary sequence trapped in the forearc basin. Indeed, if most of the movement occurs along the backthrust, the deepening of the basin will be larger and consequently the thickness of the sedimentary sequence will be greater. (2) Such balance does not exist in the case of a high-friction wedge. (3) Variation of friction along the décollement during shortening of the sand wedge leads to modification in the forearc basin filling. Thus, for similar increments of convergence, the sequence deposited in the forearc basin shows relatively larger thickness when the wedge is shortened above a high-friction décollement. We suggest that contraction and thickening in the rear part of the wedge is an efficient mechanism to, initiate and develop a forearc basin. Thus, this kind of basin occurs in convergent settings, without collapse related to local extension or tectonic erosion. They represent a sedimentary trap on a passive basement, bounded by a tectonic bulge. The Quaternary Hikurangi forearc basin, southeast of the North Island of New Zealand, is bounded by two actively uplifting ridges. Thus, this basin is considered to be a possible example of the basins modelled in our experiments, and we suggest that the limit between the basin and the wedge could be a complex backthrust zone.  相似文献   
3.
The Tillaberi stone fell in April 1970 in Republic of Niger. In the 157 g piece sent to Paris, a centimeter wide lithic inclusion is found. Contrary to previous assumptions, the stone is an L6 chondrite in which few chondrules can be distinguished; olivine is Fa 25 ± 0.4 percent with minor amounts of Ca, Cr, Ti; orthopyroxene is Fs 21.6 ± 1.2 percent with a rather large scatter of the amounts of minor elements. The feldspar, well developed, contains 10 to 11 percent An, 84 to 85 percent Ab, five percent Or, and 0.77 ± 0.09 percent FeO. The lithic inclusion contains much feldspar which corresponds to 14 to 17 percent An, 75 to 79 percent Ab, four to five percent Or without almost any FeO. This inclusion contains also rounded grains of olivine and minute crystals of chromite. It has a frothy microdoleritic texture with a frozen border against the chondritic material. As the nickel rich grains are either martensite or acicular plessite and the silicates are undeformed, a quick cooling after a short but intense heating is postulated to account for the mineralogical characteristics.  相似文献   
4.
The Sorbas Member is a late Messinian complex sedimentary system that formed immediately following deposition of the Messinian evaporites in the Sorbas Basin (South‐east Spain). This work describes the sequence architecture and facies organization of a continuous kilometre long, alluvial fan to open platform transect near the village of Cariatiz in the north‐east of the basin. The post‐evaporitic Cariatiz platform was a mixed carbonate‐siliciclastic system composed of four intermediate‐frequency, fifth‐order depositional sequences (Depositional Sequences 1 to 4) arranged in an overall prograding trend. The intense fracturing and brecciation of these deposits is attributed to the deformation and dissolution of an evaporite body measuring several tens of metres in thickness. The four sequences display significant spatial–temporal variability in both architecture and facies distribution, with two main phases: (i) Depositional Sequences 1 and 2 are ooid and oobioclastic dominated, and show normal marine faunas; and (ii) Depositional Sequences 3 and 4 show a higher siliciclastic contribution and are microbialite dominated. These important changes are interpreted as modifications of the primary controlling factors. Following an initial 70 m drowning, possibly linked to increased oceanic input, Depositional Sequences 1 to 3 were controlled mainly by eustatic variations and inherited topography; their progradation destabilized the evaporite body near the end of the Depositional Sequence 2 period. During the second phase, Depositional Sequences 3 and 4 recorded a progressive restriction of the Sorbas Basin related to a 30 to 40 m fall in water level that was driven mainly by regional factors. These regional factors were dissolution and gravity‐induced deformation of the evaporites and correlative evaporative fluid circulation associated with the contrasted arid/humid regional climate that, respectively, controlled sequence geometry and fluctuating water salinity which caused a microbialite bloom.  相似文献   
5.
Abstract— The Campos Sales meteorite fell close to the town of Campos Sales in the northeastern Brazilian state of Ceará (7°2′ S, 40°10′ W) on 1991 January 31 at 10:00 P.M. (local time). Several fragments were recovered from an area estimated to be 1 × 3 km. The stone is an ordinary L5 chondrite (Fa25.0 and FS21.6) and is lightly shocked (S1). Metal phases present are kamacite, tetrataenite, and antitaenite. Noble gases He, Ne, Ar, Kr, and Xe have been analyzed in two bulk samples of Campos Sales. All exposure ages based on determination of cosmogenic 3He, 21Ne, 38Ar, 83Kr, and 126Xe abundances and on the cosmogenic 81Kr/83Kr ratio agree well, which suggests no gas loss during cosmic-ray exposure. The cosmic-ray exposure age is 23.3 ± 1.0 Ma, which falls in the range observed for L5 chondrites (20–30 Ma). The gas-retention ages indicate He loss that must have occurred prior to or during ejection from the L-chondrite parent body.  相似文献   
6.
This study is based on a set of coarse-grained igneous rockscollected from two zoned plutons located in the central partof Tahiti Nui and Raiatea. The Ahititera pluton (central depressionof Tahiti Nui) comprises a great diversity of rocks, rangingfrom ultrabasic to felsic in composition. It shows a concentriczonation with nepheline-free rocks in its periphery and nepheline-bearingrocks in its central part. The Faaroa pluton (central depressionof Raiatea) is entirely mafic and includes only gabbros andtheralites. The two plutons have variable Nd–Sr isotopicsignatures, especially the Ahititera rocks, which are subdividedinto three groups based on their mineralogy, geochemistry andisotope composition. The isotopic variability probably reflectslocal heterogeneities in the Society mantle plume. Petrographicand isotopic data have been used to define two magmatic suitesin Ahititera, identifiable from their degree of Si undersaturation.The evolution of the mildly Si-undersaturated suite is controlledby simple fractional crystallization, whereas the strongly Si-undersaturatedsuite requires additional H2O influx. The third isotopic groupincludes only theralites. The rare earth element (REE) compositionsof the mafic rocks from both plutons do not correlate with theirisotopic signature. The REE patterns of the most Si-undersaturatedrocks are systematically characterized by steeper slopes. Suchfeatures are also observed in lavas from seamounts located withinthe present-day hotspot area. It appears that REE concentrationsin Society lavas and intrusives are probably mainly governedby variable degrees of partial melting of a garnet-free mantlesource and are independent of their isotopic signature. KEY WORDS: cumulates; fractional crystallization; partial melting; French Polynesia; plutonic rocks; Society Islands; Tahiti; Raiatea  相似文献   
7.
Microbial mediation is the only demonstrated mechanism to precipitate dolomite under Earth surface conditions. A link between microbial activity and dolomite formation in the sabkha of Abu Dhabi has, until now, not been evaluated, even though this environment is cited frequently as the type analogue for many ancient evaporitic sequences. Such an evaluation is the purpose of this study, which is based on a geochemical and petrographic investigation of three sites located on the coastal sabkha of Abu Dhabi, along a transect from the intertidal to the supratidal zone. This investigation revealed a close association between microbial mats and dolomite, suggesting that microbes are involved in the mineralization process. Observations using scanning electron microscopy equipped with a cryotransfer system indicate that authigenic dolomite precipitates within the exopolymeric substances constituting the microbial mats. In current models, microbial dolomite precipitation is linked to an active microbial activity that sustains high pH and alkalinity and decreased sulphate concentrations in pore waters. Such models can be applied to the sabkha environment to explain dolomite formation within microbial mats present at the surface of the intertidal zone. By contrast, these models cannot be applied to the supratidal zone, where abundant dolomite is present within buried mats that no longer show signs of intensive microbial activity. As no abiotic mechanism is known to form dolomite at Earth surface conditions, two different hypotheses can reconcile this result. In a first scenario, all of the dolomite present in the supratidal zone formed in the past, when the mats were active at the surface. In a second scenario, dolomite formation continues within the buried and inactive mats. In order to explain dolomite formation in the absence of active microbial metabolisms, a revised microbial model is proposed in which the mineral‐template properties of exopolymeric substances play a crucial role.  相似文献   
8.
Microbial metabolism impacts the degree of carbonate saturation by changing the total alkalinity and calcium availability; this can result in the precipitation of carbonate minerals and thus the formation of microbialites. Here, the microbial metabolic activity, the characteristics and turnover of the extracellular polymeric substances and the physicochemical conditions in the water column and sediments of a hypersaline lake, Big Pond, Bahamas, were determined to identify the driving forces in microbialite formation. A conceptual model for organomineralization within the active part of the microbial mats that cover the lake sediments is presented. Geochemical modelling indicated an oversaturation with respect to carbonates (including calcite, aragonite and dolomite), but these minerals were never observed to precipitate at the mat–water interface. This failure is attributed to the capacity of the water column and upper layers of the microbial mat to bind calcium. A layer of high Mg‐calcite was present 4 to 6 mm below the surface of the mat, just beneath the horizons of maximum photosynthesis and aerobic respiration. This carbonate layer was associated with the zone of maximum sulphate reduction. It is postulated that extracellular polymeric substances and low molecular weight organic carbon produced at the surface (i.e. the cyanobacterial layer) of the mat bind calcium. Both aerobic and anaerobic heterotrophic microbes consume extracellular polymeric substances (each process accounting for approximately half of the total consumption) and low molecular weight organic carbon, liberating calcium and producing inorganic carbon. The combination of these geochemical changes can increase the carbonate saturation index, which may result in carbonate precipitation. In conclusion, the formation and degradation of extracellular polymeric substances, as well as sulphate reduction, may play a pivotal role in the formation of microbialites both in marine and hypersaline environments.  相似文献   
9.
The changing palaeogeographical pattern of Alpine deposits across the European forelands can be traced by identifying mineral assemblages and establishing the chronology of Pliocene-Pleistocene deposits in Alpine foreland. In the late Miocene, the upper courses of the Rhine and the Aar flowed east from the Swiss molasse plain towards the Danube. In the early Pliocene (Brunssumian, 5-3.2 Ma), these same rivers headed north wards towards the Rhine Graben of Alsace. In the early Reuverian, these streams were captured south of the Rhine Graben by the Doubs. They ceased their northward flow and headed west to feed the Bresse Graben. This phase is dated to the Lower and Middle Reuverian (3.2-2.6 Ma). From the Upper Reuverian (2.6 Ma) to the present day, the Rhine has adapted approximately its present course towards the North Sea, south to north along the Rhine Graben and across the Rhine Schist Massif to feed the Dutch Grabens. This changing pattern of capture and alteration of the hydrographic system of the upper reaches of the Rhine and the Aar can be explained by local tectonic movements.  相似文献   
10.
Corona, C., Edouard, J.‐L., Guibal, F., Guiot, J., Bernard, S., Thomas, A. & Denelle, N. 2010: Long‐term summer (AD751–2008) temperature fluctuation in the French Alps based on tree‐ring data. Boreas, 10.1111/j.1502‐3885.2010.00185.x. ISSN 0300‐9843. On the basis of a dense tree‐ring width network (34 unpublished multi‐centennial larch chronologies), this paper attempts to reconstruct, for the first time, the summer temperatures in the French Alps (44°–45.30°N, 6.30°–7.45°E) during the last millennium. The adaptative Regional Growth Curve standardization method is applied to preserve interannual to multi‐centennial variations in this high‐elevation proxy data set. The proxies are calibrated using the June to August mean temperatures from the last revised version of the HISTALP database spanning the period AD1760–2003 and adjusted to take into account the warm bias before 1850. About 45% of the temperature variance is reconstructed. Despite the use of the newly updated meteorological data set, the reconstruction still shows colder temperatures than early instrumental measurements between 1760 and 1840. The proxy record evidences a prolonged Medieval Warm Period persisting until 1500, with warm periods that resemble 20th century conditions but also cold phases before 1000 synchronous with Swiss glacier advances. The Little Ice Age is rather mild until 1660 if compared with other Alpine reconstructions. Thereafter, summers are 0.7 °C cooler than the 1961–1990 mean until 1920. The maximum temperature amplitude over the past 1250 years is estimated to be 3 °C between the warmest (810s, 1990s) and coldest (1810s) decades. Most of the 20th century is comparable with the Medieval Warm Period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号