首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   4篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
排序方式: 共有5条查询结果,搜索用时 86 毫秒
1
1.
Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.  相似文献   
2.
A constitutive model of rocks subjected to cyclic stress–temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress–strain curve for rock reloading after stress–temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress–temperature and only cyclic stress. Finally, the total damage evolution induced by stress–temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress–strain relationship during stress–temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress–strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.  相似文献   
3.
Zhou  Shu-Wei  Xia  Cai-Chu 《Acta Geotechnica》2019,14(4):1195-1214

The phase field model represents sharp cracks by diffusive mushy-zone and can simulate crack propagation automatically. Propagation and coalescence of quasi-static cracks in Brazilian disks are investigated by a phase field model. The phase field modeling is implemented in Comsol Multiphysics and initially verified by a benchmark of three-point bending test. The Brazilian disk specimens containing no initial crack, a single and two pre-existing cracks subjected to compression are then tested by the phase field model. Crack propagation patterns along with the load–displacement curves are fully discussed. Meanwhile, the effects of length scale parameter and critical energy release rate on crack propagation are evaluated. In addition, the effect of crack inclination angle on the pre-cracked Brazilian disk specimens is also investigated. The numerical results obtained by the phase field model are in good agreement with previous experimental and numerical results.

  相似文献   
4.
5.
The prime objective of this work is to improve our understanding of the shear behavior of rock joints. Attempts are made to relate the peak shear strength of rock joints with its three-dimensional surface morphology parameters. Three groups of tensile joint replicas with different surface morphology are tested with direct shear tests under constant normal load (CNL) conditions. Firstly, the three-dimensional surface characterization of these joints is evaluated by an improved roughness parameter before being tested. Then, a new empirical criterion is proposed for these joints expressed by three-dimensional quantified surface roughness parameters without any averaging variables in such a way that a rational dilatancy angle function is used instead of ${\text{JRC}} \cdot \log_{10} \left( {{{\text{JCS}} \mathord{\left/ {\vphantom {{\text{JCS}} {\sigma_{\text{n}} }}} \right. \kern-0em} {\sigma_{\text{n}} }}} \right)$ by satisfying the new peak dilatancy angle boundary conditions under zero and critical-state normal stress (not physical infinite normal stress). The proposed criterion has the capability of estimating the peak shear strength at the laboratory scale and the required roughness parameters can be easily measured. Finally, a comparison among the proposed criterion, Grasselli’s criterion, and Barton’s criterion are made from the perspective of both the rationality of the formula and the prediction accuracy for the three groups of joints. The limitations of Grasselli’s criterion are analyzed in detail. Another 37 experimental data points of fresh rock joints by Grasselli are used to further verify the proposed criterion. Although both the proposed criterion and Grasselli’s criterion have almost equal accuracy of predicting the peak shear strength of rock joints, the proposed criterion is easier and more intuitive from an engineering point of view because of its Mohr–Coulomb type of formulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号