首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2017年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Hydrogeology Journal - Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest...  相似文献   
2.
Little is known of the interactions between groundwater and surface water on deeply weathered landscapes of low relief in the Great Lakes Region of Africa (GLRA). The role of groundwater in sustaining surface-water levels during periods of absent rainfall is disputed and groundwater is commonly excluded from estimations of surface-water balances. Triangulated piezometers installed beside lake gauging stations on Lake Victoria and Lake Kyoga in Uganda provide the first evidence of the dynamic interaction between groundwater and surface water in the GLRA. Stable isotope ratios (2H:1H, 18O:16O) support piezometric evidence that groundwater primarily discharges to lakes but show further that mixing of groundwater and lake water has occurred at one site on Lake Victoria (Jinja). Layered-aquifer heterogeneity, wherein fluvial-lacustrine sands overlie saprolite, gives rise to both rapid and slow groundwater fluxes to lakes which is evident from the recession of borehole hydrographs following recharge events. Darcy throughflow calculations suggest that direct contributions from groundwater to Lake Victoria comprise <1% of the total inflows to the lake. Groundwater/surface-water interactions are strongly influenced by changing drainage base (lake) levels that are controlled, in part, by regional climate variability and dam releases from Lake Victoria (Jinja).  相似文献   
3.
Deeply weathered crystalline rock aquifer systems comprising unconsolidated saprolite and underlying fractured bedrock (saprock) underlie 40% of sub-Saharan Africa. The vulnerability of this aquifer system to contamination, particularly in rapidly urbanizing areas, remains poorly understood. In order to assess solute and viral transport in saprolite derived from Precambrian gneiss, forced-gradient tracer experiments using chloride and Escherichia coli phage ΦX174 were conducted in southeastern Uganda. The bacteriophage tracer was largely unrecovered; adsorption to the weathered crystalline rock matrix is inferred and enabled by the low pH (5.7) of site ground water and the bacteriophage's relatively high isoelectric point (pI = 6.6). Detection of the applied ΦX174 phage in the pumping well discharge at early times during the experiment traces showed, however, that average ground water flow velocities exceed that of the inert solute tracer, chloride. This latter finding is consistent with observations in other hydrogeological environments where statistically extreme sets of microscopic flow velocities are considered to transport low numbers of fecal pathogens and their proxies along a selected range of linked ground water pathways. Application of a radial advection-dispersion model with an exponentially decaying source term to the recovered chloride tracer estimates a dispersivity (α) of 0.8 ± 0.1 m over a distance of 4.15 m. Specific yield (Sy) is estimated to be 0.02 from volume balance calculations based on tracer experiments. As single-site observations, our estimates of saprolite Sy and α are tentative but provide a starting point for assessing the vulnerability of saprolite aquifers in sub-Saharan Africa to contamination and estimating quantitatively the impact of climate and abstraction on ground water storage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号