首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
地质学   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Preceded by four days of intense seismicity and marked ground deformation, a new eruption of Mt. Etna started on 17 July and lasted until 9 August 2001. It produced lava emission and strombolian and phreatomagmatic activity from four different main vents located on a complex fracture system extending from the southeast summit cone for about 4.5 km southwards, from 3000 to 2100 m elevation (a.s.l.). The lava emitted from the lowest vent cut up an important road on the volcano and destroyed other rural roads and a few isolated country houses. Its front descended southwards to about 4 km distance from the villages of Nicolosi and Belpasso. A plan of intervention, including diversion and retaining barriers and possibly lava flow interruption, was prepared but not activated because the flow front stopped as a consequence of a decrease in the effusion rate. Extensive interventions were carried out in order to protect some important tourist facilities of the Sapienza and Mts. Silvestri zones (1900 m elevation) from being destroyed by the lava emitted from vents located at 2700 m and 2550 m elevation. Thirteen earthen barriers (with a maximum length of 370 m, height of 10–12 m, base width of 15 m and volume of 25 000 m3) were built to divert the lava flow away from the facilities towards a path implying considerably less damage. Most of the barriers were oriented diagonally (110–135°) to the direction of the flow. They were made of loose material excavated nearby and worked very nicely, resisting the thrust of the lava without any difficulty. After the interventions carried out on Mt. Etna in 1983 and in 1991–1992, those of 2001 confirm that earthen barriers can be very effective in controlling lava flows.  相似文献   
2.
GIS and Volcanic Risk Management   总被引:7,自引:0,他引:7  
Pareschi  M. T.  Cavarra  L.  Favalli  M.  Giannini  F.  Meriggi  A. 《Natural Hazards》2000,21(2-3):361-379
Volcanic catastrophes constitute a majorproblem in many developing and developed countries. Inrecent years population growth and the expansion ofsettlements and basic supply lines (e.g., water, gas,etc.) have greatly increased the impact of volcanicdisasters. Correct land-use planning is fundamental inminimising both loss of life and damage to property.In this contribution Geographical Information Systems(GIS), linked with remote sensing technology andtelecommunications/warning systems, have emerged asone of the most promising tools to support thedecision-making process. Some GIS are presented fortwo volcanic areas in Italy, Mt. Etna and Vesuvius.GIS role in risk management is then discussed, keepingin mind the different volcanic scenarios of effusiveand explosive phenomena. Mt. Etna system covers alarge area (more than 1,000 km2) potentiallyaffected by effusive phenomena (lava flows) whichcause damage to both houses and properties in general.No risk to life is expected. The time-scales of lavaflows allow, at least in principle, modification ofthe lava path by the building of artificial barriers.Vesuvius shows typically an explosive behaviour. Inthe case of a medium size explosive eruption, 600,000people would potentially have to be evacuated from anarea of about 200 km2 around the Volcano, sincethey are exposed to ruinous, very fast phenomena likepyroclastic surges and flows, lahars, ash fallout,etc. Ash fallout and floods/lahars are also expectedin distal areas, between Vesuvius and Avellino,downwind of the volcano. GIS include digital elevationmodels, satellite images, volcanic hazard maps andvector data on natural and artificial features (energysupply lines, strategic buildings, roads, railways,etc.). The nature and the level of detail in the twodata bases are different, on the basis of thedifferent expected volcanic phenomena. The GIS havebeen planned: (a) for volcanic risk mitigation (hazard,value, vulnerability and risk map assessing), (b) toprovide suitable tools during an impending crisis, (c)to provide a basis for emergency plans.  相似文献   
3.
The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high pCO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol%) with an appreciable content of H2S (0.8–2%). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February–March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8–25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号