首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   8篇
地质学   5篇
  2024年   1篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
排序方式: 共有13条查询结果,搜索用时 418 毫秒
1.
Weng  Meng-Chia  Lin  Cheng-Han  Shiu  Wen-Jie  Chao  Wei-An  Chiu  Chia-Chi  Lee  Ching-Fang  Huang  Wei-Kai  Yang  Che-Ming 《Landslides》2022,19(3):687-701

Mega-earthquakes and extreme climate events accompanied by intrinsic fragile geology lead to numerous landslides along mountain highways in Taiwan, causing enormous life and economic losses. In this study, a system for rapid slope disaster information integration and assessment is proposed with the aim of providing information on landslide occurrence, failure mechanisms, and subsequent landslide-affected areas to the highway authority rapidly. The functionality of the proposed system is deployed into three units: (1) geohazard rapid report (GeoPORT I), (2) multidisciplinary geological survey report (GeoPORT II), and (3) site-specific landslide simulation report (GeoPORT III). After landslide occurrence, the seismology-based monitoring network rapidly provides the initial slope disaster information, including preliminary location, event magnitude, earthquake activity, and source dynamics, within an hour. Within 3 days of the landslide, a multidisciplinary geological survey is conducted to collect high-precision topographical, geological, and remote-sensing data to determine the possible failure mechanism. After integrating the aforementioned information, a full-scale three-dimensional landslide simulation based on the discrete element method is performed within 10 days to reveal the failure process and to identify the areas potentially affected by subsequent disasters through scenario modeling. Overall, the proposed system can promptly provide comprehensive and objective information to relevant authorities after the event occurrence for hazard assessment. The proposed system was validated using a landslide event in the Central Cross-Island Highway of Taiwan.

  相似文献   
2.
In the context of the heterogeneity in the unsaturated or vadose zone, accurately representing the analytical mechanisms and in-situ water content within the soil layer poses a significant challenge. Particularly in shallow layers, thermal conditions exhibit rapid changes in response to evolving surface temperatures. This study proposes a hypothesis suggesting that the in situ heat mechanism may notably impact the soil water layer. The research introduces an innovative approach to theoretically uncover thermal conditions, including soil temperature, soil temperature gradients, and heat flux, within the shallow Quaternary gravel layer at various depths through spectral analysis of temporal observations. The study presents a stochastic inverse solution to estimate thermal conductivity by leveraging spectral analysis of soil heat flux and temperature gradients. The findings reveal that thermal conditions exhibit the most prominent periodic fluctuations during the diurnal process over a 24-hour cycle. The soil temperature gradients and heat flux measurements at depths of 0.1, 0.3, 0.6, and 1.2 m demonstrate their ability to capture changes in soil temperature and air temperature to a certain extent within the frequency domain. Furthermore, the analysis highlights the intrinsic uncertainty and sensitivity of estimating thermal conductivity in heterogeneous soil environments. The wide variability observed in thermal conductivity values, coupled with their dependence on soil type and environmental conditions, underscores the need for careful consideration of these factors in future studies and modeling efforts. Applying the derived inverse spectral solution allows for determining thermal conductivity throughout the soil-water system across depths ranging from 0.1 to 1.2 m. As a result, this research demonstrates the feasibility and practicality of assessing the thermal conductivity of the soil layer in conjunction with heat flux and temperature gradients through spectral analysis.  相似文献   
3.
A transition and subduction zone adjacent to the Ryukyu Arc, Ryukyu Trench, and Okinawa Trough, extends between southern Japan and northeastern Taiwan. It is generated during the northwestward subduction of the Philippine Sea Plate, which lies the Eurasian Plate along the Ryukyu Trench. The movement of the Philippine Sea Plate is hindered at the northeastern corner of Taiwan, which causes complicated structure of the Philippine Sea Plate at the western end of the Ryukyu subduction zone. Development of the active subduction and transition boundary near the western Ryukyu Arc is evaluated statistically by using displacements derived from GPS site data. The statistical model shows that the absolute displacement derived from GPS measurements of nearly 8 years indicates a maximum spatial variation of 0.625 m. Three trends are observed for such long-term progress, and use of linear regression also reveals quite good consistency between the data and statistic models. Such rate is also elevated following the trend development. Southeastern and nearly horizontal movement is suggested to the main development of for the site movements, it is likely related to the tensional activity adjacent to this boundary.  相似文献   
4.
It is evident that the hydrodynamic dispersion coefficient and linear flow velocity dominate solute transport in aquifers. Both of them play important roles characterizing contaminant transport. However, by definition, the parameter of contaminant transport cannot be measured directly. For most problems of contaminant transport, a conceptual model for solute transport generally is established to fit the breakthrough curve obtained from field testing, and then suitable curve matching or the inverse solution of a theoretical model is used to determine the parameter. This study presents a one-dimensional solute transport problem for slug injection. Differential analysis is used to analyze uncertainty propagation, which is described by the variance and mean. The uncertainties of linear velocity and hydrodynamic dispersion coefficient are, respectively, characterized by the second-power and fourth-power of the length scale multiplied by a lumped relationship of variance and covariance of system parameters, i.e. the Peclet number and arrival time of maximum concentration. To validate the applicability for evaluating variance propagation in one-dimensional solute transport, two cases using field data are presented to demonstrate how parametric uncertainty can be caught depending on the manner of sampling.  相似文献   
5.
6.
Captured CO2 could be deliberately injected into the ocean at great depth, where most of it would remain isolated from the atmosphere for centuries. CO2 can be transported via pipeline or ship for release in the ocean or on the sea floor. No matter what for medium depth or deep sea, it appears that a potential area exists between 122–122.5°E and 21.8–22.3°N for CO2 sequestration. The east coast of Taiwan can be a candidate for CO2 temporary storage or transmitted plant. To have whole picture of assessment of sea level fluctuation, a completed statistical summary of seasonal sea level at six tidal gauge stations along the east coast of Taiwan is provided herein. Seasonal sea level time series is analyzed using spectral analysis in frequency domain to identify periodic component and phase propagation, especially for the astronomical-driven tidal effects. It identifies that the semi-diurnal and diurnal components in the resultant time series are related to astronomical tides M2, and K1 and O1, respectively. It demonstrates a full analysis of sea level variations, and results can be useful when construction of testing or operating facilities on sea surface becomes desirable in the future.  相似文献   
7.
8.
The hydraulic diffusivity gives a measure of diffusion speed of pressure disturbances in groundwater system; large values of hydraulic diffusivity lead to fast propagation of signals in aquifer. This research provides a novel design and derives spectral representation to determine hydraulic diffusivity using spectral analysis of groundwater levels coupled with time-dependent boundary adjacent to marine system and no flow boundary in aquifer system. To validate the proposed method, water levels of fluctuated boundary and groundwater well in a sandy confined aquifer were collected. The hydraulic diffusivity is then obtained by an inverse process in the non-linear complex form of spectral relationship. The method essentially is constructed on the conceptual design of natural forcing transmitted in large aquifer. It is unlike the conventional field pumping test which is only used to determine hydraulic properties of groundwater in small range around the well. Hydraulic diffusivity of the confined aquifer is determined using real observation and then checked by comparing to the published range. It suggests that without local aquifer test to estimate hydraulic diffusivity in a coastal aquifer using spectral representation with its relevant flow system and boundary has become feasible.  相似文献   
9.
Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan   总被引:2,自引:2,他引:0  
This study focused on the landslide case at Su-Hua Highway 115.9k, Taiwan. A preliminary investigation was conducted on geomorphologic features change and landslide mechanisms using digital elevation models, geographical maps, and remote sensing images at different times in conjunction with geological surveys and analysis results. Using the results of geological surveys and physical model experiments, we constructed a discrete element method to simulate the process of landslide movement. The results revealed deformation in the metamorphic rock slopes upstream of 115.9k. The slopes around the erosion gully upstream presented visible slope toes cutting and tension cracks at the crest as well as unstable rock masses. According to the results of numerical simulation for typhoon Megi event, intense rains could induce slippage in the rock debris/masses in the source area, initially at a speed of 5–20 m/s. Subsequently, steeper terrain could cause the rock debris/masses to accelerate to form a high-speed (>30 m/s) debris slide quickly moving downstream to form an alluvial fan downstream by the sea.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号