首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   6篇
大气科学   3篇
地球物理   44篇
地质学   11篇
综合类   1篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   8篇
  1998年   1篇
  1993年   1篇
排序方式: 共有59条查询结果,搜索用时 437 毫秒
1.
In this paper a spatially distributed model of the hillslope sediment delivery processes, named the sediment delivery distributed (SEDD) model, is initially reviewed; the model takes into account the sediment delivery processes due to both the hillslope sediment transport and the effects of slope curvature. Then the rainfall and sediment yield events measured at the experimental SPA2 basin, in Sicily, are used both to calibrate the SEDD model and to verify the predictive capability of the distributed sediment delivery approach at event scale. For the SPA2 basin discretized into morphological units and stream tubes, the SEDD model is calibrated at event scale using the measurements carried out at the outlet of the experimental basin in the period December 2000–January 2001. The model calibration is used to determine a relationship useful for estimating the unique coefficient βe of the model by rainfall erosivity factor Re at event scale. To test the predictive capability of the βe = f(Re) relationship, 20 events measured in the period September 2002–December 2005 are used; the comparison between measured sediment yield values and calculated ones for all monitored events shows that the sediment delivery distributed approach has a good predictive ability at event scale. The analysis also shows that estimating βe by the relationship βe = f(Re) gives a better agreement between measured and calculated sediment yields than obtained with the median value βe,m of all 27 calculated βe values. Finally the analysis at annual scale, for the period 2000–2005, allows the estimation of the median value βa,m representative of the annual behaviour. This analysis shows that the sediment delivery distributed approach also has a good predictive ability at annual scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
Using the LHEM/SME the Patuxent Landscape Model (PLM) was built to simulate fundamental ecological processes in the watershed scale driven by temporal (nutrient loadings, climatic conditions) and spatial (land use patterns) forcings. The model addresses the effects of both the magnitude and spatial patterns of land use change and agricultural practices on hydrology, plant productivity, and nutrient cycling in the landscape. The spatial resolution for the full Patuxent watershed is 1 km2, while subwatersheds are analyzed at a 200 × 200 m resolution to allow adequate depiction of the pattern of ecosystems and human settlement on the landscape. The temporal resolution is different for various components of the model. We used a modular, multiscale approach to calibrate and test the model. Model results show good agreement with data.  相似文献   
3.
4.
Flow velocity is one of the most important hydrodynamic variables for both channelized (rill and gullies) and interrill erosive phenomena. The dye tracer technique to measure surface flow velocity Vs is based on the measurement of the travel time of a tracer needed to cover a known distance. The measured Vs must be corrected to obtain the mean flow velocity V using a factor αv = V/Vs which is generally empirically deduced. The Vs measurement can be influenced by the method applied to time the travel of the dye-tracer and αv can vary in different flow conditions. Experiments were performed by a fixed bed small flume simulating a rill channel for two roughness conditions (sieved soil, gravel). The comparison between a chronometer-based (CB) and video-based (VB) technique to measure Vs was carried out. For each slope-discharge combination, 20 measurements of Vs, characterized by a sample mean Vm, were carried out. For both techniques, the frequency distributions of Vs/Vm resulted independent of slope and discharge. For a given technique, all measurements resulted normally distributed, with a mean equal to one, and featured by a low variability. Therefore, Vm was considered representative of surface flow velocity. Regardless of roughness, the Vm values obtained by the two techniques were very close and characterized by a good measurement precision. The developed analysis on αv highlighted that it is not correlated with Reynolds number for turbulent flow regime. Moreover, αv is correlated neither with the Froude number nor with channel slope. However, the analysis of the empirical frequency distributions of the correction factor demonstrated a slope effect. For each technique (CB, VB)-roughness (soil, gravel) combination, a constant correction factor was statistically representative even if resulted in less accurate V estimations compared to those yielded by the slope-specific correction factor.  相似文献   
5.
In this paper, a recently deduced flow resistance equation for open channel flow was tested under equilibrium bed‐load transport conditions in a rill. First, the flow resistance equation was deduced applying dimensional analysis and the incomplete self‐similarity condition for the flow velocity distribution. Then, the following steps were carried out for developing the analysis: (a) a relationship (Equation  13 ) between the Γ function of the velocity profile, the rill slope, and the Froude number was calibrated by the available measurements by Jiang et al.; (b) a relationship (Equation  17 ) between the Γ function, the rill slope, the Shields number, and the Froude number was calibrated by the same measurements; and (c) the Darcy–Weisbach friction factor values measured by Jiang et al. were compared with those calculated by the rill flow resistance equation with Γ estimated by Equations  13 and 17 . This last comparison demonstrated that the rill flow resistance equation, in which slope and Shields number, representative of sediment transport effects, are introduced, is characterized by the lowest values of the estimate errors.  相似文献   
6.
7.
8.
9.
Physical parameters of explosive eruptions are typically derived from tephra deposits. However, the characterization of a given eruption relies strongly on the quality of the dataset used, the strategy chosen to obtain and process field data and the particular model considered to derive eruptive parameters. As a result, eruptive parameters are typically affected by a certain level of uncertainty and should not be considered as absolute values. Unfortunately, such uncertainty is difficult to assess because it depends on several factors and propagates from field sampling to the application and interpretation of dispersal models. Characterization of explosive eruptions is made even more difficult when tephra deposits are poorly exposed and only medial data are available. In this paper, we present a quantitative assessment of the uncertainty associated with the characterization of tephra deposits generated by the two largest eruptions of the last 2,000 years of Cotopaxi volcano, Ecuador. In particular, we have investigated the effects of the determination of the maximum clast on the compilation of isopleth maps, and, therefore, on the characterization of plume height. We have also compared the results obtained from the application of different models for the determination of both plume height and erupted volume and for the eruption classification. Finally, we have investigated the uncertainty propagation into the calculation of mass eruption rate and eruption duration. We have found that for our case study, the determination of plume height from isopleth maps is more sensitive to the averaging techniques used to define the maximum clast than to the choice of dispersal models used (i.e. models of Carey and Sparks 1986; Pyle 1989) and that even the application of the same dispersal model can result in plume height discrepancies if different isopleth lines are used (i.e. model of Carey and Sparks 1986). However, the uncertainties associated with the determination of erupted mass, and, as a result, of the eruption duration, are larger than the uncertainties associated with the determination of plume height. Mass eruption rate is also associated with larger uncertainties than the determination of plume height because it is related to the fourth power of plume height. Eruption classification is also affected by data processing. In particular, uncertainties associated with the compilation of isopleth maps affect the eruption classification proposed by Pyle (1989), whereas the VEI classification is affected by the uncertainties resulting from the determination of erupted mass. Finally, we have found that analytical and empirical models should be used together for a more reliable characterization of explosive eruptions. In fact, explosive eruptions would be characterized better by a range of parameters instead of absolute values for erupted mass, plume height, mass eruption rate and eruption duration. A standardization of field sampling would also reduce the uncertainties associated with eruption characterization.  相似文献   
10.
We present a comprehensive probabilistic hazard assessment for tephra fallout of Cotopaxi volcano (Ecuador), a quiescent but active stratovolcano known for its highly explosive behaviour. First, we developed a set of possible eruptive scenarios based on thorough field investigations, literature studies and using the Global Volcanism Program (GVP) database. Five eruption scenarios were identified, including two based on large pre-historical sub-Plinian/Plinian eruptions with eruptive parameters constrained from field investigations (One Eruption Scenario; OES) and three Eruption Range Scenarios (ERS) based on the Volcanic Explosivity Index (VEI) classification, for which eruptive parameters (i.e. erupted volume, plume height and median grainsize) were stochastically sampled within boundaries defined by VEI 3, 4 and 5. Second, the modelling was performed using the advection-diffusion model TEPHRA2 in combination with wind profiles from the NOAA NCEP/NCAR Reanalysis 1 database. We performed 1,000 runs for each eruption scenario, stochastically sampling a wind profile (OES and ERS) and a set of eruptive parameters (ERS only) at each run. Using the conditional probabilities of occurrence of eruption of VEI 3, 4 and 5 calculated from the GVP catalogue, we assessed the probability of tephra accumulation in a given time window. Based on the GVP database, a simple Poisson model shows that an eruption of VEI???3 has a 36?% probability of occurrence in the next 10?years. Finally, the hazard assessment was compiled based on three different outputs, including (i) probability maps for a given tephra accumulation, (ii) isomass maps for a given probability value and (iii) hazard curves for a given location. We conclude that the area west of Cotopaxi is exposed to light to severe tephra fallout for the smallest eruption magnitude considered (i.e. VEI 3). This area comprises a main communication axis (Panamerican Highway) topographically constrained at the bottom of the Interandean Valley, as well as the capital Quito and the town of Latacunga. In a companion paper, Biass et?al. (this volume) propose a method for a rapid risk assessment for tephra fallout using global and easily accessible data and the hazard assessment described here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号