首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
地球物理   14篇
地质学   15篇
自然地理   12篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2003年   3篇
  2002年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Many Vertisols in Tigray, Ethiopia, typically carry a discontinuous rock fragment (RF, size 0.5–> 40 · 10− 2 m) cover with 10 to 100 RFs m− 2. Such RF mulches are of agricultural and environmental significance because they influence the water balance in the underlying soils and the crop yield. Natural RF concentrations are mostly considered as eolian or hydraulic lag deposits, or as the result of lateral transport over the soil surface from a rock outcrop, upslope. In cultivated areas RF mulches can develop by tillage.This paper presents the case of a natural RF mulch whose lithology indicates that the RFs are up-squeezed by the local Vertisol. The study site is located in the pass of Enda Maryam, Tigray, Northern Ethiopia (39°8′ E and 13°36′ N). A circular area of 10 m diameter, about 200 m away from the water divide in the valley has been cleared annually between 01/1999 and 05/2003. During this period, 625 RFs, 17 being > 7.5 · 10− 2 m in size, totalling a mass of nearly 62 kg, have been collected. After correction for measurement procedures, the rate of RF up-warping by the Vertisol at Enda Maryam is assessed at 5 RFs m− 2 in 3 years. At this rate of appearance, the formation of current RF concentrations on top of active valley Vertisols is only a matter of 101–2 years, provided the availability of RFs below the soil surface.Although important underground displacements were measured in the Vertisol between 01/1999 and 05/2002, the supposed link between up-squeezing of RFs and plastic deformations of ‘chimney’, ‘diapir’ or ‘intrusion’-like type in the Vertisol could not be evidenced. Instead, RFs are clearly concentrated on the soil surface as well as in depth, along the existing vertical desiccation cracks, often > 1 m deep which display polygonal configurations at the soil surface. Further, bundles of slickensides containing some RFs, have been mapped at the base of the Vertisol. The slickenside configuration suggests that the RF-bearing substrate is being scraped off.While the underground displacement of RFs along active slickensides seems normal, the process of RFs ascending in ‘upright’ position in the edge of desiccation cracks needs explanation. The closure of a desiccation crack is a peristaltic-like movement, following ascent or descent of the capillary fringe. It is hypothesized that this movement gradually pushes the RF to the surface or to another place or level in the soil profile where the crack closes in last instance.The apparent young age of the valley Vertisol mulches in Ethiopia might indicate the very recent formation of yearly recurrent desiccation cracks of Vertisols in the area. Available information confirms that most valleys in the study area used to be perennially marshy. Under these conditions no movements of RFs in the soil profile are expected to occur. Gullying, leading to pronounced seasonal desiccation of the Vertisols, started in several cases not more than 50 years ago.  相似文献   
2.
Distinct rock fragment displacements occur on the ambas, or structurally determined stepped mountains of the Northern Ethiopian Highlands. This paper describes the rock fragment detachment from cliffs by rockfall, quantifies its annual rate, and identifies factors controlling rock fragment movement on the scree slopes. It further presents a conceptual model explaining rock fragment cover at the soil surface in these landscapes. In the May Zegzeg catchment (Dogu'a Tembien district, Tigray), rockfall from cliffs and rock fragment movement on debris slopes by runoff and livestock trampling were monitored over a 4-year period (1998–2001). Rockfall and rock fragment transport mainly induced by livestock trampling appear to be important geomorphic processes. Along a 1500-m long section of the Amba Aradam sandstone cliff, at least 80 t of rocks are detached yearly and fall over a mean vertical distance of 24 m resulting in a mean annual cliff retreat rate of 0.37 mm y− 1. Yearly unit rock fragment transport rates on scree slopes ranged between 23.1 and 37.9 kg m− 1 y− 1. This process is virtually stopped when exclosures are established. Corresponding mean rock fragment transport coefficients K are 32–69 kg m− 1 y− 1 on rangeland but only 3.9 kg m− 1 y− 1 in densely vegetated exclosures. A conceptual model indicates that besides rockfall from cliffs and argillipedoturbation, all factors and processes of rock fragment redistribution in the study area are of anthropogenic origin.  相似文献   
3.
From water to tillage erosion dominated landform evolution   总被引:3,自引:1,他引:3  
While water and wind erosion are still considered to be the dominant soil erosion processes on agricultural land, there is growing recognition that tillage erosion plays an important role in the redistribution of soil on agricultural land. In this study, we examined soil redistribution rates and patterns for an agricultural field in the Belgian loess belt. 137Cs derived soil erosion rates have been confronted with historical patterns of soil erosion based on soil profile truncation. This allowed an assessment of historical and contemporary landform evolution on agricultural land and its interpretation in relation to the dominant geomorphic process. The results clearly show that an important shift in the relative contribution of tillage and water erosion to total soil redistribution on agricultural land has occurred during recent decades. Historical soil redistribution is dominated by high losses on steep midslope positions and concavities as a result of water erosion, leading to landscape incision and steepening of the topography. In contrast, contemporary soil redistribution is dominated by high losses on convex upperslopes and infilling of slope and valley concavities as a result of tillage, resulting in topographic flattening. This shift must be attributed to the increased mechanization of agriculture during recent decades. This study shows that the typical topographical dependency of soil redistribution processes and their spatial interactions must be accounted for when assessing landform and soil profile evolution.  相似文献   
4.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
Gullying has been widespread in the Ethiopian Highlands during the 20th century. It threatens the soil resource, lowers crop yields in intergully areas through enhanced drainage and desiccation, and aggravates flooding and reservoir siltation. Knowing the age and rates of gully development during the last few decades will help explain the reasons for current land degradation. In the absence of historical written or photographic documentation, the AGERTIM method (Assessment of Gully Erosion Rates Through Interviews and Measurements) has been developed. It comprises measurements of contemporary gully volumes, monitoring of gully evolution over several years and semi‐structured interview techniques. Gully erosion rates in the Dogu'a Tembien District, Tigray, Ethiopia, were estimated in three representative case‐study areas. In Dingilet, gullying started around 1965 after gradual environmental changes (removal of vegetation from cropland in the catchment and eucalyptus plantation in the valley bottom); rill‐like incisions grew into a gully, which increased rapidly in the drier period between 1977 and 1990. The estimated evolution of the total gully volume in the other areas show patterns similar to those of the Dingilet gully. Average gully erosion rate over the last 50 years is 6·2 t ha?1 a?1. Since 1995, no new gullies have developed in the study area. Area‐specific short‐term gully erosion rates are now on average 1·1 t ha?1 a?1. The successful application of the AGERTIM method requires an understanding of the geomorphology of the study area and an integration of the researchers with the rural society. It reveals that rapid gully development in the study area is some 50 years old and is mainly caused by human‐induced environmental degradation. Under the present‐day conditions of ‘normal’ rain and catchment‐wide soil and water conservation, gully erosion rates are decreasing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
Today the eastern tributaries of the Upper Khabur run dry during the summer and the landscape is devoid of trees. This picture is misleading when we try to understand archaeological sites within their former environmental context. Interdisciplinary geomorphological, archaeobotanical and ostracod research on a sequence from the Wadi Jaghjagh indicates that relatively stable, perennial flow velocities occurred during the mid 4th to mid-3rd millennium BC. Evidence was found for a gallery forest and swamp belt along the Jaghjagh during the mid-4th millennium BC. Oak park woodland was present within the region in the 3rd millennium BC and probably up to at least the 3rd century AD. Shortly after 2500 BC, Jaghjagh stream velocities probably decreased or the stream bed had changed its location. Later deposits, possibly dating to the 5th century BC, indicate similar, rather stable flow of the Jaghjagh. More recently however, about ca. AD 900 or afterwards, a flashflood-like regime occurred, which may relate to deforestation. The Wadi Khanzir sediment archives reflect the flashy intermittent regime of this stream, like it still is today, with flashflood evidence dating to the first half of the Holocene and probably dating to approximately AD 400 or later. Along the Jarrah, topsoil was eroded and redeposited by the wadi sometime between 1300 and 600 BC. This may have been caused by the intensive resettlement program of this region around 800 BC. Between about 600 and 300 BC 1.5 m of clay was deposited on the plain.  相似文献   
7.
The use of drainage ditches on farmland has an impact on erosion processes both on‐site and off‐site, though their environmental impacts are not unequivocal. Here we study the runoff response and related rill erosion after installing drainage ditches and assess the effects of stone bunds in north Ethiopia. Three different land management systems were studied in 10 cropland catchments around Wanzaye during the rainy season of 2013: (1) the exclusive use of drainage ditches (locally called feses), (2) the exclusive use of stone bunds, and (3) a mixture of both systems. Stone bunds are an effective soil and water conservation technique, making the land more resistant against on‐site erosion, and allowing feses to be installed at a larger angle with the contour. The mean rill volumes for the 10 studied cropland catchments during the rainy season of 2013 was 3.73 ± 4.20 m3 ha?1 corresponding to a soil loss of 5.72 ± 6.30 ton ha?1. The establishment of feses causes larger rill volumes (R = 0.59, N = 10), although feses are perceived as the best way to avoid soil erosion when no stone bunds are present. The use of feses increases event‐based runoff coefficients (RCs) on cropland from c. 5% to values up to 39%. Also, a combination of low stone bund density and high feses density results in a higher RC, whereas catchments with a high stone bund density and low feses density have a lower RC. Peak runoff discharges decrease when stone bund density increases, whereas feses density is positively related to the peak runoff discharge. A multiple linear relation in which both feses and stone bund densities are used as explanatory variable, performs best in explaining runoff hydrograph peakedness (R2 = 83%). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
While most studies focus on the effect of soil pipes on hillslope stability, this present study investigates the impact of landsliding on pipe development. It is hypothesized that poorly drained active and dormant landslides change the hillslope hydrology through (i) surface flow obstruction, by changing topography, as well as (ii) subsurface flow obstruction by tilting less‐permeable clay‐rich substrates. Hence, new preferential flow paths are created at reverse slopes within the landslide zone and at the boundary of the landslide, enhancing pipe formation. This study aims at a better understanding of the interaction between collapsed pipe (CP) occurrence and landslide (LS) occurrence in the Flemish Ardennes (Belgium) by comparing their respective spatial patterns. At least 24.5% of the 139 sites with CP were related to the occurrence of an observed LS. Poorly drained LS may create favourable conditions for pipe development. Outside LS, natural and anthropogenic (e.g. broken field drains, road drainage) causes may result in concentrated subsurface flow, resulting in pipe development. No evidence was found that pipe development enhanced LS, probably because the subsurface drainage discharge generated upslope of the LS is too low. Even when pipes become blocked, it is more likely that new pipes develop and new collapses occur than they trigger or reactivate LS. A conceptual model is presented summarizing all elements that influence piping erosion in the Flemish Ardennes, including the role of LS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
This study aims to examine the efficiency of Opuntia ficus‐indica for removing organochlorine pesticides from surface waters. Adsorption properties such as size, dose, and time of O. ficus‐indica for aldrin, dieldrin, and dichlorodiphenyltrichloroethane (DDT) were studied through stirring and column methods. Because of their high affinity and swelling characteristics, dried O. ficus‐indica was studied in stirring while fresh unpeeled O. ficus‐indica was applied in both stirring and column experiments and proved to be well‐suited to column application. Before removing pesticides, the column was flashed with distilled water eliminate the turbidity and smell from fresh unpeeled cactus. The removal of pesticides increased with an increasing adsorbent dose and decreased with adsorbent particle sizes. The optimum adsorbent dose is 10 g for dried and 15 g for fresh unpeeled O. ficus‐indica. The experimental results show that O. ficus‐indica possesses strong adsorption ability for aldrin, dieldrin, and DDT, and the adsorption isotherm data obeyed the Freundlich model. The results of our small‐scale experiments suggest a strong potential to develop local small‐scale water treatment units that can be used at the level of individual households or local communities, using a widely available adsorbent.  相似文献   
10.
Since coastal tourism is one of the fastest growing sectors of tourism industry, coastal areas have become increasingly vulnerable in the case of flooding. While in recent years a number of different methods have been put forward to map coastal flood risks, the implications of tourism dynamics for the assessment of human casualties has remained largely overlooked in these models. This chapter examines to what extent the ignorance of (residential) coastal tourism may bias the calculations of human casualties. To this end, a case study has been conducted on the Belgian coast. Both the dynamic nature of coastal tourism and the behaviour of residential tourists in storm surge scenarios are considered. The results of this study show that including tourism dynamics in flood risk management is justified and appropriate, depending on the tourist attractiveness of the flood-prone area and its temporal fluctuations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号