首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   2篇
地质学   1篇
海洋学   1篇
天文学   3篇
  2022年   1篇
  2013年   3篇
  2011年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 672 毫秒
1
1.
Hydrogeology Journal - An extensive network of multilevel vibrating-wire piezometers (VWP) was recently created to monitor the spatial and temporal variation of pore pressure (and hydraulic head)...  相似文献   
2.
3.
4.
The aim of this work is to compare macroturbulent coherent structures (MCS) geometry and organization between ice covered and open channel flow conditions. Velocity profiles were obtained using a Pulse‐Coherent Acoustic Doppler Profiler in both open channel and ice‐covered conditions. The friction imposed by the ice cover results in parabolic shaped velocity profiles. Reynolds stresses in the streamwise (u) and vertical (v) components of the flow show positive values near the channel bed and negative values near the ice cover, with two distinctive boundary layers with specific turbulent signatures. Vertically aligned stripes of coherent flow motions were revealed from statistics applied to space‐time matrices of flow velocities. In open channel conditions, the macroturbulent structures extended over the entire depth of the flow whereas they were discontinued and nested close to the boundary walls in ice‐covered conditions. The size of MCS is consequently reduced in scale under an ice cover. The average streamwise length scale is reduced from 2.5 to 0.4Y (u) and from 1.5 to 0.4Y (v) where Y is the flow depth. In open channel conditions, the vertical extent of MCS covers the entire flow depth, whereas the vertical extent was in the range 0.58Y–1Y (u) and 0.81Y–1Y (v) in ice‐covered conditions. Under an ice cover, each boundary wall generates its own set of MCS that compete with each other in the outer region of the flow, enhancing mixing and promoting the dissipation of coherent structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Hydro‐geomorphological assessments are an essential component for riverine management plans. They usually require costly and time‐consuming field surveys to characterize the spatial variability of key variables such as flow depth, width, discharge, water surface slope, grain size and unit stream power throughout the river corridor. The objective of this research is to develop automated tools for hydro‐geomorphological assessments using high‐resolution LiDAR digital elevation models (DEMs). More specifically, this paper aims at developing geographic information system (GIS) tools to extract channel slope, width and discharge from 1 m‐resolution LiDAR DEMs to estimate the spatial distribution of unit stream power in two contrasted watersheds in Quebec: a small agricultural stream (Des Fèves River) and a large gravel‐bed river (Matane River). For slope, the centreline extracted from the raw LiDAR DEM was resampled at a coarser resolution using the minimum elevation value. The channel width extraction algorithm progressively increased the centerline from the raw DEM until thresholds of elevation differences and slopes were reached. Based on the comparison with over 4000 differential global positioning system (GPS) measurements of the water surface collected in a 50 km reach of the Matane River, the longitudinal profile and slope estimates extracted from the raw and resampled LiDAR DEMs were in very good agreement with the field measurements (correlation coefficients ranging from 0 · 83 to 0 · 87) and can thus be used to compute stream power. The extracted width also corresponded very well to the channel as seen from ortho‐photos, although the presence of bars in the Matane River increased the level of error in width estimates. The estimated maximum unit stream power spatial patterns corresponded well with field evidence of bank erosion, indicating that LiDAR DEMs can be used with confidence for initial hydro‐geomorphological assessments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Metal transport in mollusk extrapallial fluid (EPF) that acts as a "bridge" between soft tissues and shell has surprisingly received little attention until now. Using ultrafiltration and radiotracer techniques we determined silver concentrations and speciation in the EPF of the blue mussel Mytilus edulis after short-term uptake and depuration laboratory experiments. Radiolabelled silver ((11?m)Ag) was used in dissolved or nanoparticulate phases (AgNPs < 40 nm), with a similar low Ag concentration (total radioactive and cold Ag ~0.7 μg/L) in a way that mussels could uptake radiotracers only from seawater. Our results indicated that silver nanoparticles were transported to the EPF of blue mussels at a level similar to the Ag ionic form. Bulk activity of radiolabelled silver in the EPF represented only up to 7% of the bulk activity measured in the whole mussels. The EPF extracted from mussels exposed to both treatments exhibited an Ag colloidal complexed form based on EPF ultrafiltration through a 3 kDa filter. This original study brings new insights to internal circulation of nanoparticles in living organisms and contributes to the international effort in studying the potential impacts of engineered nanomaterials on marine bivalves which play an essential role in coastal ecosystems, and are important contributors to human food supply from the sea.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号