首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2011年   2篇
  2009年   1篇
  2006年   2篇
  2004年   2篇
排序方式: 共有7条查询结果,搜索用时 218 毫秒
1
1.
Steady-state silica release rates (rSi) from basaltic glass and crystalline basalt of similar chemical composition as well as dunitic peridotite have been determined in far-from-equilibrium dissolution experiments at 25 °C and pH 3.6 in (a) artificial seawater solutions under 4 bar pCO2, (b) varying ionic strength solutions, including acidified natural seawater, (c) acidified natural seawater of varying fluoride concentrations, and (d) acidified natural seawater of varying dissolved organic carbon concentrations. Glassy and crystalline basalts exhibit similar rSi in solutions of varying ionic strength and cation concentrations. Rates of all solids are found to increase by 0.3-0.5 log units in the presence of a pCO2 of 4 bar compared to CO2 pressure of the atmosphere. At atmospheric CO2 pressure, basaltic glass dissolution rates were most increased by the addition of fluoride to solution whereas crystalline basalt rates were most enhanced by the addition of organic ligands. In contrast, peridotite does not display any significant ligand-promoting effect, either in the presence of fluoride or organic acids. Most significantly, Si release rates from the basalts are found to be not more than 0.6 log units slower than corresponding rates of the peridotite at all conditions considered in this study. This difference becomes negligible in seawater suggesting that for the purposes of in-situ mineral sequestration, CO2-charged seawater injected into basalt might be nearly as efficient as injection into peridotite.  相似文献   
2.
Steady-state element release rates from crystalline basalt dissolution at far-from-equilibrium were measured at pH from 2 to 11 and temperatures from 5 to 75 °C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ?25 °C but slower at alkaline pH and temperatures ?50 °C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Calcium is primarily present in plagioclase, which exhibits a U-shaped dissolution rate dependence on pH. In contrast, Mg and Fe are contained in pyroxene and olivine, minerals whose dissolution rates decrease monotonically with pH. As a result, crystalline basalt preferentially releases Mg and Fe relative to Ca at acidic conditions. The injection of acidic CO2-charged fluids into crystalline basaltic terrain may, therefore, favour the formation of Mg and Fe carbonates rather than calcite. Element release rates estimated from the sum of the volume fraction normalized dissolution rates of plagioclase, pyroxene, and olivine are within one order of magnitude of those measured in this study.  相似文献   
3.
Far-from-equilibrium dissolution rates of a suite of volcanic glasses that range from basaltic to rhyolitic in composition were measured in mixed flow reactors at pH 4 and 10.6, and temperatures from 25 to 74°C. Experiments performed on glasses of similar composition suggest that dissolution rates are more closely proportional to geometric surface areas than their BET surface areas. Measured geometric surface area normalized dissolution rates (r+,geo) at 25°C were found to vary exponentially with the silica content of the glasses. For pH 4 solutions this relation is given by:
(A1)  相似文献   
4.
The major ion chemistry of the Marsyandi basin and six of its tributaries in the Nepalese Himalaya have been investigated during the monsoon months of 2002. Weekly water samples taken at 10 river monitoring stations in the Annapurna watershed over the course of 4 months provide chemical weathering data for the region at an unprecedented temporal and spatial resolution. The river chemistry of all but one basin is heavily dominated by carbonate weathering which, compared to silicate weathering, contributes 80 to 97% of the total solute load. This prevalence is due to a combination of (a) intrinsically faster dissolution kinetics of carbonates, (b) relatively high runoff and (c) glacial meltwater and low temperatures at high altitudes resulting in enhanced carbonate solubilities. Monitoring stations with headwaters in the Tethyan Sedimentary Series (TSS) are particularly carbonate-rich and slightly supersaturated with respect to calcite through half of the monsoon season. Silicate weathering in the TSS is driven largely by sulfuric acid and therefore does not contribute significantly to the drawdown of atmospheric CO2. With respect to the tributaries in the Greater Himalayan Sequence (GHS), carbonate weathering is practically as predominant as for the TSS, in spite of the largely felsic lithology of the GHS. Relative to the TSS, the primary proton source in the GHS has shifted, with at least 80% of the protons derived from carbonic acid. Averaged over the whole field area, the CO2 fluxes, based on silicate-derived Ca and Mg, are considerably lower than the global average. Assuming that this study area is representative of the entire range, we conclude that in situ weathering of the High Himalayas does not represent a significant sink of atmospheric carbon dioxide, despite the presence of a watershed south of the GHS that is characterized by a four times higher CO2 consumption rate than the global average. Silicate weathering rates of all basins appear to be climate controlled, displaying a tight correlation with runoff and temperature. Given the extremely low chemical weathering under transport-limited conditions in high-altitude crystalline terrains outside of the monsoon season, this would result in virtually no chemical exhumation for 2/3 of the year in such a cold and arid climate, north of the rain shadow cast by the High Himalayas.  相似文献   
5.
Far-from-equilibrium, steady-state dissolution rates at pH 4 of a suite of natural glasses, ranging from basaltic to rhyolitic in composition, have been determined as a function of aqueous fluoride concentrations up to 1.8 × 10−4 mol/kg in mixed-flow reactors. Dissolution rates of each of these glasses increase monotonically with increasing aqueous fluoride concentration. Measured dissolution rates are found to be consistent with both the Furrer and Stumm (1986) surface coordination model and the Oelkers (2001) multi-oxide dissolution model. Application of the latter model yields the following equation that can describe all measured rates as a function of both glass and aqueous solution composition:
  相似文献   
6.
Comparison of measured far-from-equilibrium dissolution rates of natural glasses and silicate minerals at 25 °C and pH 4 reveals the systematic effects of crystallinity and elemental composition on these rates. Rates for both minerals and glasses decrease with increasing Si:O ratio, but glass dissolution rates are faster than corresponding mineral rates. The difference between glass and mineral dissolution rates increases with increasing Si:O ratio; ultra-mafic glasses (Si:O ? 0.28) dissolve at similar rates as correspondingly compositioned minerals, but Si-rich glasses such as rhyolite (Si:O ∼ 0.40) dissolve ?1.6 orders of magnitude faster than corresponding minerals. This behaviour is interpreted to stem from the effect of Si-O polymerisation on silicate dissolution rates. The rate controlling step of dissolution for silicate minerals and glasses for which Si:O > 0.28 is the breaking of Si-O bonds. Owing to rapid quenching, natural glasses will exhibit less polymerisation and less ordering of Si-O bonds than minerals, making them less resistant to dissolution. Dissolution rates summarized in this study are used to determine the Ca release rates of natural rocks at far-from-equilibrium conditions, which in turn are used to estimate their CO2 consumption capacity. Results indicate that Ca release rates for glasses are faster than those of corresponding rocks. This difference is, however, significantly less than the corresponding difference between glass and mineral bulk dissolution rates. This is due to the presence of Ca in relatively reactive minerals. In both cases, Ca release rates increase by ∼two orders of magnitude from high to low Si:O ratios (e.g., from granite to gabbro or from rhyolitic to basaltic glass), illustrating the important role of Si-poor silicates in the long-term global CO2 cycle.  相似文献   
7.
Organic ligands affect the sorption and mobility of radionuclides in soils. Batch desorption experiments on goethite particles reveal the extent of uranyl desorption and hence bioavailability with different organic acids. The desorptive strength increases in the following order: background electrolyte < Na-alginate < desferrioxamine B (DFO-B) < oxalate. The sequence is consistent with decreasing molecular size and mass from alginate via DFO-B to oxalate. The concomitant Fe release in the desorption experiments indicates that desorption from goethite and not dissolution of goethite governs the mobility of adsorbed U(VI). A compilation of DFO-B surface excesses on goethite from our experiments together with literature values indicate that DFO-B adsorbs at a constant ∼3% to the goethite surface. It is surprising that such a small fraction suffices to account for the considerable uranyl desorption and thus remobilization of a radionuclide into solution. Oxalate displays higher surface concentrations but still lower than the determined uranyl surface excess. It follows that based on the high U(VI) stability constants, both organic ligands induce the desorption of uranyl species by increasing the chemical affinity of the aqueous phase. In the case of alginate, desorption of uranyl is weak and adsorbed alginate hampers any considerable detachment of U(VI) in the presence of the more potent ligands, DFO-B and oxalate. This inhibition is based on biosorption and in this respect polysaccharides in soils may retard and even halt the advance of actinides through the soil column. This hypothesis calls for further studies into the interaction of siderophores and polysaccharides with soil adsorbents and their role in the mobilization of contaminant metals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号