首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
地球物理   1篇
地质学   21篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   4篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
As shown by geological, mineralogical, and isotope geochemical data, trachybasaltic-trachytic-trachyrhyolitic (TTT) rocks from the Nyalga basin in Central Mongolia result from several eruptions of fractionated magmas within a short time span at about 120 Ma. Their parental basaltic melts formed by partial melting of mantle peridotite which was metasomatized and hydrated during previous subduction events. Basaltic trachyandesites have high TiO2 and K2O, relatively high P2O5, and low MgO contents, medium 87Sr/86Sr(0) ratios (0.70526-0.70567), and almost zero or slightly negative εNd(T) values. The isotope geochemical signatures of TTT rocks are typical of Late Mesozoic basaltic rocks from rift zones of Mongolia and Transbaikalia. The sources of basaltic magma at volcanic centers of Northern and Central Asia apparently moved from a shallower and more hydrous region to deeper and less hydrated lithospheric mantle (from spinel to garnet-bearing peridotite) between the Late Paleozoic and the latest Mesozoic. The geochemistry and mineralogy of TTT rocks fit the best models implying fractional crystallization of basaltic trachyandesitic, trachytic, and trachyrhyodacitic magmas. Mass balance calculations indicate that trachytic and trachydacitic magmas formed after crystallization of labradorite-andesine, Ti-augite, Sr-apatite, Ti-magnetite, and ilmenite from basaltic trachyandesitic melts. The melts evolved from trachytic to trachyrhyodacitic and trachyrhyolitic compositions as a result of prevalent crystallization of K-Na feldspar, with zircon, chevkinite-Ce, and LREE-enriched apatite involved in fractionation. Trachytic, trachyrhyodacitic, and trachyrhyolitic residual melts were produced by the evolution of compositionally different parental melts (basaltic trachyandesitic, trachytic, and trachyrhyodacitic, respectively), which moved to shallower continental crust and accumulated in isolated chambers. Judging by their isotopic signatures, the melts assimilated some crustal material, according to the assimilation and fractional crystallization (AFC) model.  相似文献   
3.
The metamorphic rocks of the Khavyven Highland in eastern Kamchatka were determined to comprise two complexes of metavolcanic rocks that have different ages and are associated with subordinate amounts of metasediments. The complex composing the lower part of the visible vertical section of the highland is dominated by leucocratic amphibole-mica (±garnet) and epidote-mica (±garnet) crystalline schists, whose protoliths were andesites and dacites and their high-K varieties of the island-arc calc-alkaline series. The other complex, composing the upper part of the vertical section, consists of spilitized basaltoids transformed into epidote-amphibole and phengite-epidote-amphibole green schists, which form (together with quartzites, serpentinized peridotites, serpentinites, and gabbroids) a sea-margin ophiolitic association. The high LILE concentrations, high K/La, Ba/Th, Th/Ta, and La/Nb ratios, deep Ta-Nb minima, and low (La/Yb)N and high 87Sr/86Sr ratios of the crystalline schists of the lower unit are demonstrated to testify to their subduction nature and suggest that their protolithic volcanics were produced in the suprasubduction environment of the Ozernoi-Valaginskii (Achaivayam-Valaginskii) island volcanic arc of Campanian-Paleogene age. The green schists of the upper unit show features of depleted MOR tholeiitic melts and subduction melts, which cause the deep Ta-Nb minima, and low K/La and 87Sr/86Sr ratios suggesting that the green schists were formed in a marginal basin in front of the Ozernoi-Valaginskaya island arc. Recently obtained K-Ar ages in the Khavyven Highland vary from 32.4 to 39.3 Ma and indicate that the metamorphism of the protolithic rocks occurred in the Eocene under the effect of collision and accretion processes of the arc complexes of the Ozernoi-Valaginskii and Kronotskii island arcs with the Asian continent and the closure of forearc oceanic basins in front of them. The modern position of the collision suture that marks the fossil subduction zone of the Ozernoi-Valaginskii arc and is spatially restricted to the buried Khavyven uplift in the Central Kamchatka Depression, which is characterized by well-pronounced linear gravity anomalies.  相似文献   
4.
We studied the geologic position, geodynamic setting, petrology, and geochemistry of veined lepidolitic granitoids from the Mungutiyn Tsagaan Durulj (MTD) occurrence (central Mongolia), found within the area of Mesozoic intraplate rare-metal magmatism. It has been established that their trace-element enrichment resulted from the intense effect of fluids rich in F, K, Li, Rb, Cs, Sn, Be, and W, which arrived from a deep magma chamber of rare-metal granitic melts, on leucogranites with originally weak rare-metal mineralization. Very high contents of F, rare alkali metals, Sn, Be, and W, characteristic of MTD granitoids, are close only to those in greisens of rare-metal granites and topaz-lepidolite-albitic pegmatites. The difference from the greisens in each case might be due to the features of the original rocks. The difference between the greisenized MTD leucogranites and the topaz-lepidolite-albitic pegmatites is more radical: Along with evident petrographic distinctions, it includes an evolution trend toward the albite norm decrease, not typical of Li–F igneous rocks; rock shearing and gneissosity, which must have contributed to their chemical transformation according to this trend; and stably lower contents of Nb and Ta (trace elements which usually accumulate during crystallization fractionation of F–Li granitic melts and are poorly soluble in magmatic fluids). The greisenized MTD granitoids are not only high-grade rare-metal ores of Li, Rb, F, and Sn but are also regarded as an indicator of a deep concealed pluton of rare-metal granites.  相似文献   
5.
The classical models of adakite formation by melting of basaltic layer of oceanic lithosphere in the subduction zone were verified using geochemical and Sr–Nd isotope data on the Early Paleozoic granitoids of Eastern Sayan. The presence of adakites in fold belts is usually regarded as geochemical proxy for paleogeodynamic reconstruction. The formation of felsic derivatives with adakitic signatures in the collisional orogens is inconsistent with these models and requires their revision. It is shown that the composition of the granitoids and their evolution cannot be described with these models. In order to solve this problem, two hypotheses of granitoid formation by mixing of two geochemically contrasting reservoirs were proposed and verified. According to the first hypothesis, the granitoids represent the mixing products between alkaline olivine basalts and partial melts of the gray gneiss basement of this region. The second model relates the formation of the granitoids with melting of geochemically 2700 Ma-old enriched source in the subcontinental lithospheric mantle. In spite of differences, both these hypotheses are based on the remobilization of sources formed at the previous stages of the geological evolution of the region. In both cases, adakitic geochemical characteristics of forming felsic magmas are determined by the composition of protolith rather than by their geodynamic position. Obtained preliminary results place constraints on genetic models and geochemical reservoirs participating in the formation of the granitoids.  相似文献   
6.
This article is focused on dacitic pumices, which are the felsic members of the basalt–andesite–dacite series. The phenoscrysts of all of the rocks from this series are the same: plagioclase, olivine, clino- and orthopyroxenes, and titanomagnetite. The groundmass of dacitic pumices that contain microlites of the same minerals and felsic glass has been studied in detail. Quartz and K–Na feldspar are absent. The study of that microlite zoning that formed in the upper parts of the channels or at the surface under the most nonequilibrium conditions was one of the most important tasks; it revealed several interesting features. As an example, anorthite plagioclases were found as microlites. The resorption zones are absent in both plagioclase phenocrysts and microlites, which implies the major role of fractionation rather than magma mixing.  相似文献   
7.
The problem of the geochemical classification of granitoid magmatism in the zone of interaction of oceanic and continental plates is considered in this paper by the example of Mesozoic granitoids of the Krutogorova and Kol’ intrusive complexes of the Sredinny Range, Kamchatka. Based on new geological, petrological, and geochemical data (including the Sr, Nd, and Pb isotope systematics of rocks), it was shown that the protoliths of the granitoids were volcanic-terrigenous sequences accumulated within a Cretaceous marginal basin in the eastern Asian continent. The granitoids crystallized at ~80 Ma (SHRIMP U-Pb age) under the conditions of the andalusite-sillimanite depth facies corresponding to a pressure of approximately 2 kbar and induced contact metamorphism in the host sequences, which are made up of sediments with sheetlike bodies of mafic and ultramafic volcanics (Kikhchik Group and its metamorphic analogues of the Kolpakova, Kamchatka, and Malki groups). The lower age boundary of sedimentation of the host sequences and the time of basic volcanism coincide with the beginning of the formation of the Okhotsk-Chukotka volcanic belt. Such a correlation is not accidental and reflects a genetic connection between the processes of magmatic activation in the continental-margin sedimentary basin and the formation of the continental margin volcanic belt in eastern Asia. The development of basic volcanism in the sedimentary basin accompanied by the ascent of deep fluids resulted in the entrainment of crustal materials into magmatic processes and the formation of crustal magma chambers, the activity of which was manifested by the eruption of intermediate and silicic lavas and emplacement of shallow granitoid intrusions of considerable areal extent. These intrusions induced contact metamorphism in the enclosing volcanosedimentary complexes. The subsequent Eocene (60-50 Ma) collision processes related to the obduction of the oceanic segment of the crust of the transitional zone onto the Asian continental margin resulted in the tectonic piling of the rocks of Central Kamchatka and strong crustal thickening, which was favorable for its metamorphic alteration reaching the kyanite-sillimanite depth level of the amphibolite facies under the influence of a thermal front and deep fluids affecting lower crustal zones. The Eocene regional metamorphism caused not only metamorphic transformations, migmatization, and granitization in the sequences of the Sredinny Range, which underwent only contact hornfels formation during the first stage, but also metamorphism, migmatization, and extensive foliation in the igneous rocks of the Kol’ and Krutogorova complexes, which were transformed into gneissic metagranites.  相似文献   
8.
Doklady Earth Sciences - The isotope and geochemical characteristics of Eocene–Oligocene igneous rocks of Western Kamchatka were studied. It was shown that igneous rocks of the Eocene Kinkil...  相似文献   
9.
The results of geochronological (U–Pb, Ar–Ar), geochemical, and isotopic (Sr, Nd) studies of the Ordovician and Devonian mafic volcanic–subvolcanic rock associations of the Minusinsk Depression are presented. The obtained ages of magmatic associations and the basite composition, considering previous studies, witness to the impact of two mantle plumes different in age (Late Cambrian–Ordovician and Devonian) on suprasubduction rock complexes in active continental margin settings.  相似文献   
10.
Geological and geochemical data indicate that the formation of the granulite-like rocks in the contact aureole of the Yurchik gabbronorite intrusion of the Ganal Range, Kamchatka, was caused by the contact metamorphism, metasomatism, and local melting of the initial volcanosedimentary rocks of the Vakhtalka Sequence of the Ganal Group. The temperature in the inner part of the aureole reached 700–800°C and caused the transformation of the basic volcanic rocks of the sequence into two pyroxene-plagioclase, clinopyroxene-amphibole-plagioclase, and amphibole-plagioclase hornfelses, while sedimentary rocks were converted into garnet-biotite ± cordierite hornfelses. The hornfelsed basic volcanic rocks were locally subjected to metasomatic alteration and magmatic replacement with formation of biotite-orthopyroxene-plagioclase metasomatic bodies containing biotite-orthopyroxene-plagioclase ± garnet veinlets and aggregates. During these processes, sedimentary interlayers were converted into garnet enderbites at 700–800°C and 3.2–4.8 kbar. The comparison of the chemical composition of basic volcanic rocks of the Vakhtalka Sequence and their transformation products indicates that the metasomatic alteration and magmatic replacement correspond to siliceous-alkaline metasomatism (granitization) and cause subsequent and uneven influx of SiO2, Al2O3, Na2O, K2O, Rb, Ba, Zr, Nb, and Cl and removal of Fe, Mg, Mn, Ca, Cr, Co, Ti, Y, and S. REE data on basic metavolcanic rocks, hornfelses, and metasomatites suggest that the processes of hornfelsation, metasomatism, and magmatic replacement of the initial volcanic rocks were accompanied by significant increase in LREE and slight decrease in HREE. The Sr and Nd isotope study of the rocks in the aureole showed that the initial basic volcanic rocks of the Vakhtalka Sequence are isotopically close to both mature island arc tholeiites and mid-ocean ridge basalts. The metasomatic alteration and magmatic replacement of volcanic rocks in the aureole lead to the decrease of 143Nd/144Nd and increase of 87Sr/86Sr approximately parallel to mantle array. Pb isotopic ratios in the studied rocks become more radiogenic from initial metavolcanic rocks to metasomatites. It is suggested that the processes of metamorphism, metasomatism, and magmatic replacement were caused by highly mineralized mantle fluids, which percolated along magmatic channels serving as pathways for gabbroid magma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号