首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2010年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Low-temperature and high-pressure eclogites with an oceanic affinity in the western part of the Dabie orogen have been investigated with combined Lu–Hf and U–Pb geochronology. These eclogites formed over a range of temperatures (482–565 °C and 1.9–2.2 GPa). Three eclogites, which were sampled from the Gaoqiao country, yielded Lu–Hf ages of 240.7 ± 1.2 Ma, 243.3 ± 4.1 Ma and 238.3 ± 1.2 Ma, with a corresponding lower-intercept U–Pb zircon age of 232 ± 26 Ma. Despite the well-preserved prograde major- and trace-element zoning in garnets, these Lu–Hf ages mostly reflect the high-pressure eclogite-facies metamorphism instead of representing the early phase of garnet growth due to the occurrence of omphacite inclusions from core to rim and the shell effect. An upper-intercept zircon U–Pb age of 765 ± 24 Ma is defined for the Gaoqiao eclogite, which is consistent with the weighted-mean age of 768 ± 21 Ma for the country gneiss. However, the gneiss has not been subjected to successive high-pressure metamorphism. The new Triassic ages are likely an estimate of the involvement of oceanic fragments in the continental subduction.  相似文献   
2.
Doklady Earth Sciences - LA-ICP-MS U–Pb dating of detrital zircons reveals two levels of accumulation of Proterozoic quartzites in the Kyrgyz North Tianshan. The quartzites of the Makbal...  相似文献   
3.
U–Pb dating of detrital zircon from the Kokdjot Group and Bolshekaroi Formation (Malyi Karatau) yielded for all the samples age clusters at about 800–805, 855–890, 1980–2100, and 2440–2470 Ma. The Kolmogorov–Smirnov test suggests they have identical provenance sources. The Kokdjot Group and Bolshekaroi Formation ages are presumably Neoproterozoic, not older than 800 Ma, though a somewhat younger age (not older 770 Ma) cannot be ruled out.  相似文献   
4.
We present U-series, Sr-Nd-Pb isotope, and trace element data from the two principal volcanic chains on Luzon Island, developed over oppositely dipping subduction zones, to explore melting and mass transfer processes beneath arcs. The Bataan (western) and Bicol (eastern) arcs are currently subducting terrigenous and pelagic sediments, respectively, which have different trace element and isotopic compositions. The range of (230Th/238U) disequilibria for both arcs is 0.85-1.15; only lavas from Mt. Mayon (Bicol arc) have 230Th activity excesses. Bataan lavas have higher 87Sr/86Sr and lower 143Nd/144Nd than Bicol lavas (87Sr/86Sr = 0.7042-0.7046, 143Nd/144Nd = 0.51281-0.51290 vs. 87Sr/86Sr = 0.70371-0.70391, 143Nd/144Nd = 0.51295-0.51301) and both arcs show steep linear arrays towards sediment values on 207Pb/204Pb vs. 206Pb/204Pb diagrams. Analysis of incompatible element and isotopic data allows identification of a sediment component that, at least in part, was transferred as a partial melt to the mantle wedge peridotite. Between 1% and 5% sediment melt addition can explain the isotopic and trace element variability in the rocks from both arcs despite the differences in sediment supply. We therefore propose that sediment transfer to the mantle wedge is likely mechanically or thermally limited. It follows that most sediments are either accreted, reside in the sub-arc lithosphere, or are recycled into the convecting mantle. However, whole-sale sediment recycling into the upper mantle is unlikely in light of the global mid-ocean ridge basalt data. Fluid involvement is more difficult to characterize, but overall the Bicol arc appears to have more fluid influence than the Bataan arc. Rock suites from each arc can be related by a dynamic melting process that allows for 230Th ingrowth, either by dynamic or continuous flux melting, provided the initial (230Th/232Th) of the source is ∼0.6-0.7. The implication of either model is that inclined arrays on the U-Th equiline diagram may not have chronologic significance. Modeling also suggests that U-series disequilibria are influenced by the tectonic convergence rate, which dictates mantle matrix flow. Thus with slower matrix flow there is a greater degree of 230Th ingrowth. While other factors such as prior mantle depletion and addition of a subducted component may explain some aspects of U-series data, an overall global correlation between tectonic convergence rate and the extent of U-Th disequilibria may originate from melting processes.  相似文献   
5.
The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide–copper–gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U–Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW–ESE shear zones. They encompass Mesoarchean (3.08–2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite–scapolite, biotite–scapolite–tourmaline–magnetite alteration, and proximal potassium feldspar, chlorite–epidote and chalcopyrite formation. U–Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re–Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72–2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90–1.88-Ga ore formation in the Sossego–Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72–2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia–Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号