首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地质学   5篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 14 毫秒
1
1.
We provide new insights into the prograde evolution of HP/LT metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg = 0.27–0.73) and chloritoid (overall X Mg = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve PT conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The PT paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.  相似文献   
2.
Crystallization experiments of basaltic andesite mafic endmember from the 24 ka Lower Pollara eruption (Salina, Aeolian Islands, Italy) were investigated at 200 MPa, 950–1100 °C, in the H2O activity (aH2O) range ~0.3 to 1, and at two ranges of oxygen fugacity (fO2) between ~FMQ to FMQ+1 and ~FMQ+2 to FMQ+3.3 (log bars, FMQ is fayalite-magnetite-quartz). Comparison of the produced phase assemblages and phase compositions with the natural sample reveals that the storage conditions were ~1050 °C, ~2.8 wt% H2O in the melt (aH2O ~0.5), and relatively oxidizing (~FMQ+2.5). The composition of plagioclase in the groundmass indicates a period of cooling to ≤950 °C. The overall differentiation trends of the Salina volcanics can be explained by fractional crystallization close to H2O saturated conditions (~5 wt% H2O in the melt at 200 MPa) and most likely by accumulation of plagioclase, i.e., in basaltic andesites, and by various degree of mixing–mingling between the corresponding differentiates. The slightly elevated K2O contents of the most mafic basaltic andesites that can be found in the lowermost unit of the Lower Pollara pyroclastics reveal earlier processes of moderately hydrous fractional crystallization at higher temperature (>~1050 °C). Fractional crystallization with decreasing influence of H2O causes a moderate decrease of MgO and a significant increase of K2O relative to SiO2 in the residual liquids. It is exemplarily shown that the crystallization of SiO2-rich phases at high temperature and low aH2O of only moderately K2O-rich calc-alkaline basalts can produce shoshonitic and high potassic rocks similar to those of Stromboli and Volcano. This suggests that the observed transition from calc-alkaline to shoshonitic and high potassic volcanism at the Aeolian Arc over time can be initiated by a general increase of magmatic temperatures and a decrease of aH2O in response to the extensional tectonics and related increase of heat flow and declining influence of slab-derived fluids.  相似文献   
3.
4.
This paper introduces the software solution Bingo-Antidote for thermodynamic calculations at equilibrium based on iterative thermodynamic models. It describes a hybrid strategy combining the strength of Gibbs energy minimization (GEM) and inverse thermobarometry models based on the comparison between the modelled and observed mineral assemblage, modes and compositions. The overall technique relies on quantitative compositional maps acquired by electron probe micro-analyser for obtaining a mutually consistent set of observed data such as bulk rock and mineral compositions. Thus it offers the opportunity to investigate metamorphic rocks on a microscale. The scoring part Bingo integrates three statistical model quality factors for the assemblage, for the mineral modes, for the mineral compositions combined in a global evaluation criterion that quantifies how the model reproduces the observations for the investigated volume. The input parameters of GEM affecting the model quality such as pressure, temperature and eventually some components of the bulk composition (e.g. the molar amount of hydrogen, carbon or oxygen) or activity variables of fluids and gases (e.g. , , f(O2)) can be optimized by inversion in Antidote using several mapping stages followed by a direct search optimization. Examples of iterative models based on compositional maps processed with Bingo-Antidote demonstrate the utility of the program. In contrast to the qualitative interpretation of phase diagrams, the inversion maximizes the benefits of GEM and permits the derivation of statistically ‘optimal’ pressure–temperature conditions for well-equilibrated samples. In addition, Bingo-Antidote opens new avenues for petrological investigations such as the generation of chemical potential landscape maps.  相似文献   
5.
Deep mantle plumes and associated increased geotherms are expected to cause an upward deflection of the lower–upper mantle boundary and an overall thinning of the mantle transition zone between about 410 and 660 km depth. We use subsequent forward modelling of mineral assemblages, seismic velocities, and receiver functions to explain the common paucity of such observations in receiver function data. In the lower mantle transition zone, large horizontal differences in seismic velocities may result from temperature‐dependent assemblage variations. At this depth, primitive mantle compositions are dominated by majoritic garnet at high temperatures. Associated seismic velocities are expected to be much lower than for ringwoodite‐rich assemblages at undisturbed thermal conditions. Neglecting this ultralow‐velocity zone at upwelling sites can cause a miscalculation of the lower–upper mantle boundary on the order of 20 km.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号