首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Natural Hazards - Discharge is traditionally measured at gauge stations located at discrete positions along the river course. When the volume of water discharge is higher than the river bank,...  相似文献   
2.
Water discharge is the main parameter in hydraulic modeling for flood hazard assessment. However, the unavailability of data on discharge and observed river morphologies resulted in erroneous calculations and irregularities in flood inundation mapping. The objectives of this study are (i) to investigate uncertainties of hydraulic parameters (width, cross-sectional depth, and channel slope) used in discharge equation and (ii) to examine the influence of estimate discharge on water extent and flood depth with different boundary conditions on interferometric synthetic aperture radar (IFSAR) and modified IFSAR DEMs. Sensitivity analysis was conducted with the Monte Carlo simulation method to generate random data combinations. Bjerklie’s equation was used to calculate discharge based on the three variables, and Manning’s n was substituted into the Hydrologic Engineering Center River Analysis System (HEC-RAS) model. TerraSAR-X was used to distinguish existing flood water bodies and normal water extent. The uncertainty of the combined variables was assessed with the likelihood measures such as F-statistic, mean absolute error, root mean square error, and Nash–Sutcliffe efficiency which compares observed and predicted inundated area as well as flood water depth simulated using the HEC-RAS model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号