首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   2篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
The variability and scales of the sea surface structure of the northern Ionian Sea from January 1993 to December 2007 were studied by means of altimeter remotely-sensed weekly Sea Level Anomaly (SLA) objective maps. Variability in the sea surface structure was addressed by means of empirical orthogonal function (EOF) analysis and, assuming an exponential correlation model, scales of the SLA field were quantified as e-folding distances of the SLA autocorrelation function. The variability in the sea surface structure, described by the first three EOFs, which cumulatively explain 60.3% of the data set variance, is characterized by a large-scale structure with variability on a time scale of ∼10-13 years and, on shorter scales, an eddy system with variability on an annual scale. The variability in the large-scale structure describes an overturning of the SLA field, which took place in 1997, and determines a reversal of the geostrophic upper-layer circulation. As the large-scale circulation transition takes place, time-dependent spectral analysis of EOF coefficients shows a redistribution of the spectral energy from inter-annual to semi-annual and monthly components. Spatial scales display variability on an annual and inter-annual time scale. On the annual time scale, variability in spatial scales is characterized by longer values in summer-fall and shorter in winter-spring. Inter-annual variability in spatial scales is demonstrated by a remarkable drop in the values during fall in the period 1998-2000. We propose an explanation of the variability in horizontal scales in terms of the redistribution of water masses and related modifications of the vertical structure of the water column associated with different regimes of the basin-scale circulation.  相似文献   
2.
3.
Differential Models for Evolutionary Compositions   总被引:1,自引:1,他引:0  
General systems are frequently decomposable into parts and these parts can evolve in time or space, a frequent occurrence in the field of Geosciences. In most cases, fitting models to forecast future states of the system is a goal of the analysis. Modelling interactions between parts may also be of common interest. The system can be analysed from different points of view; the traditional one consists in modelling each part of the system in time. Alternatively, modelling the evolution of the parts as proportions is proposed herein and attention is centred on the compositional evolution. The compositions are expressed in orthogonal coordinates (ilr) and then modelled using first-order differential equations with constant coefficients. Simple models are shown to be very flexible, including many of the standard growth curve models. The models are fitted using regression techniques on the integrated coordinates. The use and interpretation of these differential models is illustrated with several examples: a simulated example; urban waste in Catalonia (Spain); oil production and reserves; and growth of a luzonite crystal.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号