首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   3篇
地质学   29篇
  2011年   1篇
  2010年   3篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
排序方式: 共有29条查询结果,搜索用时 595 毫秒
1.
White mica from the Liassic black shales and slates in Central Switzerland was analysed by transmission electron microscopy (TEM) and electron microprobe to determine its textural and compositional evolution during very low-grade prograde metamorphism. Samples were studied from the diagenetic zone, anchizone and epizone (T ≈100°–450 °C). Phyllosilicate minerals analysed include illite/smectite (I/S), phengite, muscovite, brammallite, paragonite, margarite and glauconite. Textural evolution primarily is towards larger, more defect-free grains with compositions that approach those of their respective end-members. The smectite-to-illite transformation reduced the amounts of the exchange components SiK?1Al?1, MgSiAl?2, and Fe3+Al?1. These trends continue to a lesser degree in the anchizone and epizone. Correlations between the proportion of smectite in I/S and the composition of I/S indicate that smectite layers may contain a high layer charge. Illite in I/S bears a compositional resemblance to macrocrystalline phengite in some samples, but is different in others. Paragonite first appears in the upper diagenetic zone or lower anchizone as an interlayer-deficient brammallite, and it may be mixed with muscovite on the nanometre scale. Owing to the small calculated structure factor for paragonite-muscovite superstructures, conventional X-ray powder diffraction cannot distinguish between mixed-layer structures and a homogeneous compositionally intermediate solid solutions. However, indirect TEM evidence shows that irregularly shaped domains of Na- and K-rich mica exist below 10 nm. Subsequent coarsening of domains at higher grades produced discrete paragonite grains at the margins of muscovite crystals or in laths parallel to the basal plane of the host muscovite. Margarite appears in the epizone and follows a textural evolution similar to paragonite in that mixtures of margarite, paragonite, and muscovite may initially occur on the nanometre scale. However, no evidence of interlayer-poor margarite has been found.  相似文献   
2.
A geochemical study of 28 Ma tholeiitic to transitional basaltsfrom the Kerguelen Archipelago (Mont des Ruches and Mont Fontaine)indicates that three distinct magma types erupted within  相似文献   
3.
The Austurhorn intrusive complex in southeastern Iceland representsthe evolved hypabyssal remains of an eroded Tertiary (6–7Ma) central volcano. The complex consists of a layered gabbrointrusion, a composite granophyric stock, and abundant maficand felsic dikes. Mineralogical and geochemical trends amongcontemporaneous, compositionally diverse liquids from the complexprovide insight into the genesis of evolved basalts and rhyolitesin Iceland that are difficult to infer from studies of onlylavas. Mafic and felsic samples have comparable ranges in incompatibletrace element ratios (Ba/La and P/Ce) and Sr- and Pb-isotopes(O'Nions and Pankhurst, 1973; B. Hanan, pers. comm., 1988),suggesting derivation from a common parental composition. Majorand trace element variations throughout the Austurhorn suiteare consistent with fractional crystallization of the observedphenocrysts. Quartz-normative basalts were derived from parentalbasalt containing 7.8 wt.% MgO by extensive low-pressure crystallizationof olivine, augite, plagioclase, magnetite, and ilmenite. Thefractionating assemblage is consistent with the observed mineralogyof associated gabbro. Moreover, the cumulus mineralogy of thegabbro provides evidence for fractionation processes in a compositionalinterval not represented by dikes and sills (i.e., 54–63wt.% SiO2).Diversity among the mafic dikes reflects severaladditional factors: (1) crystallization under conditions ofvariable oxygen fugacity; (2) separate mantle melting eventsthat produce different Ce/Yb values; (3) contamination of somemafic dikes at depth, presumably by interaction with felsicmagmas. Major and trace element trends among most felsic samples canbe modeled by fractionation of the observed mineral phases:plagioclase, K-feldspar, clinopyroxene, ilmenite, apatite, allanite,and zircon. Although crustal melting has been proposed for generatingIcelandic rhyolites, most Austurhorn felsic samples are unlikeliquids derived by melting of hydrated basalts. In particular,apatite and zircon have controlled the abundances of Zr, Hf,and the REE in the felsic rocks, but they are unlikely to beresidual phases during partial melting of basalt. One felsicdike, interpreted as a melt of an evolved source, shows petrographicevidence of in situ anatexis and also has anomalous trace elementabundances and unusually high 206Pb/204Pb.  相似文献   
4.
Chlorite and associated minerals from the volcanogenic Taveyanne metasediment of the western Helvetic nappes, Switzerland, were investigated by electron microprobe (EMP) and transmission electron microscopy (TEM) in order to determine their textural and chemical evolution during low-temperature metamorphism. EMP analyses of chloritic material from sub-greenschist facies outcrops show a decrease of Si and Σ(Ca, Na, K) with increasing metamorphic grade. A number of conclusions may be drawn from combined TEM images and analytical electron microscopy (AEM) data. 1 In diagenetic-grade samples, chlorite crystals (observed maximum defect-free distance=80 nm) always contain some 1 nm layers (with a maximum of 29% of all layers) and less frequently some 0.7 nm berthierine-like layers. With increasing grade, the amounts of 1 and 0.7 nm layers decrease, and most chlorite from the epizone is structurally pure or contains less than 2% of 1 nm layers. 2 A positive correlation was found between the amount of 1 nm layers and the Ca+K+Na content, indicating that the 1 nm layers are saponite. 3 Observations and calculations suggest that the transformation reaction of saponite to chlorite takes place by the replacement of the interlayer cations in saponite by brucite-like layers resulting in a local volume decrease. In contrast, the destruction of berthierine has only minor influence on the local bulk volume. These results confirm recent studies which show that the change in composition measured by EMP of diagenetic-grade chloritic material are mainly the result of mixtures of chlorite and saponite. The use of chlorite ‘geothermometry’ in such systems is greatly influenced by the presence of saponite and hence is not based on reaction equilibria, even though temperatures calculated in this study agree with temperatures derived from other methods. Therefore, chlorite evolution should be treated as a kinetically controlled grade indicator and developed as a qualitative scale similar to the illite crystallinity index.  相似文献   
5.
Since the multilayered and multifunctional nature of the pterosaurian flight membrane was first described on the basis of superbly preserved material from the Solnhofen Lithographic Limestone (Upper Jurassic, South Germany) and the Lower Cretaceous Santana Formation of NE Brazil (Martill & Unwin 1989, Tischlinger & Frey 2002), subsequent investigations of several Rhamphorhynchus specimens under ultraviolet light have confirmed the presence of several layers and launched the first biomechanical analysis of the pterosaurian flight membrane (Frey et al. 2007).  相似文献   
6.
7.
Detailed textural and chemical data for mineral assemblages on a regional scale are presented for the metaandesitic Eocene-Oligocene Taveyanne greywacke of the Glarus Alps, Eastern Switzerland. Presented data indicate an increase of metamorphic grade from zeolite facies to prehnite-pumpellyite and pumpellyite-actinolite facies. Low-grade outcrops contain laumontite, minor corrensite and pumpellyite (assemblage type 1), whereas outcrops of higher metamorphic grade contain prehnite and two populations of pumpellyite (type 2), prehnite—pumpellyite-(Al)—white mica (type 3), a single outcrop shows pumpellyite-actinolite facies (type 4). From the zeolite to prehnite-pumpellyite/pumpellyite-actinolite facies there are indications for an increase of the chemical equilibrium domain size for the critical paragenesis from a single detrital grain ≤1 mm) in type 1, to a few millimetres in type 2, and to a whole thin section in type 3. Metamorphic P - T conditions were determined by a combination of chlorite thermometry, fluid inclusion and vitrinite reflectance data. Peak temperatures range from 170-190 C for zeolite facies to 270-310 C for prehnite-pumpellyite and pumpellyite-actinolite facies. For the higher temperature range, pressures of 2-3 kbar are derived indicating a geothermal gradient of 24-32 C km-1. The well-constrained temperature estimations derived for the assemblages provide a useful test of the different empirical calibrations of chlorite thermometers recently proposed. The best correspondence to the temperatures determined here is for the Cathelineau calibration. In addition, in the lower grade samples differences in textures and calculated temperatures provide a mean to distinguish between detrital and newly formed chlorites.  相似文献   
8.
FREY  MARTIN 《Journal of Petrology》1978,19(1):95-135
The unmetamorphosed equivalents of the regionally metamorphosedclays and marls that make up the Alpine Liassic black shaleformation consist of illite, irregular mixed-layer illite/montmorillonite,chlorite, kaolinite, quartz, calcite, and dolomite, with accessoryfeldspars and organic material. At higher grade, in the anchizonalslates, pyrophyllite is present and is thought to have formedat the expense of kaolinite; paragonite and a mixed-layer paragonite/muscovitepresumably formed from the mixed-layer illite/montmorillonite.Anchimetamorphic illite is poorer in Fe and Mg than at the diageneticstage, having lost these elements during the formation of chlorite.Detrital feldspar has disappeared. In epimetamorphic phyllites, chloritoid and margarite appearby the reactions pyrophyllite + chlorite = chloritoid + quartz+ H2O and pyrophyllite + calcite ± paragonite = margarite+ quartz + H2O + CO2, respectively. At the epi-mesozone transition,paragonite and chloritoid seem to become incompatible in thepresence of carbonates and yield the following breakdown products:plagioclase, margarite, clinozoisite (and minor zoisite), andbiotite. The maximum distribution of margarite is at the epizone-mesozoneboundary; at higher metamorphic grade margarite is consumedby a continuous reaction producing plagioclase. Most of the observed assemblages in the anchi-and epizone canbe treated in the two subsystems MgO (or FeO)-Na2O–CaO–Al2O3–(KAl3O5–SiO2–H2O–CO2).Chemographic analyses show that the variance of assemblagesdecreases with increasing metamorphic grade. Physical conditions are estimated from calibrated mineral reactionsand other petrographic data. The composition of the fluid phasewas low in XCO2 throughout the metamorphic profile, whereasXCH4 was very high, particularly in the anchizone where aH2Owas probably as low as 0.2. P-T conditions along the metamorphicprofile are 1–2 kb/200–300 °C in the anchizone(Glarus Alps), and 5 kb/500–550 °C at the epi-mesozonetransition (Lukmanier area). Calculated geothermal gradientsdecrease from 50 °C/km in the anchimetamorphic Glarus Alpsto 30 °C/km at the epi-mesozone transition of the Lukmanierarea.  相似文献   
9.
Many of the coarse-grained peridotite inclusions in basanitesfrom Nunivak Island, Alaska, contain amphibole and a smallerfraction also contain phlogopite and apatite. All of these peridotiteshave light REE/heavy REE abundance ratios greater than chondritesand many have abundances of K, Rb, Sr, Ba and light REE whichexceed estimates for primitive mantle. On the basis of mineraltextures and compositions we infer that the clinopyroxene, amphibole,phlogopite and apatite equilibrated with a metasomatic fluid.Isotopic (Sr and Nd) ratios and parent-daughter abundance datafor the coarse-grained peridotites constrain the age of themetasomatism to be less than 200 million years. Associated amphibole pyroxenite inclusions are not metasomatized;these inclusions probably formed as crystal segregates froman alkalic magma. Both pyroxenites and coarse-grained peridotitesare isotopically similar to basalts from Nunivak Island. Usingthese data, we propose a model in which the metasomatized peridotiteswere wallrocks located adjacent to the pyroxenites, and thatmetasomatism of these peridotites was caused by the infiltrationof a residual silicate melt or volatile-rich fluid derived fromthe parental magma of the pyroxenites; i.e. the metasomatismwas a consequence of basaltic magmatism. Furthermore, the parentalmagma of the pyroxenites was probably petrogenetically relatedto the Nunivak volcanism. REE modelling of fluids in equilibriumwith clinopyroxenes from the coarse-grained peridotites is consistentwith this model.  相似文献   
10.
Phenocryst compositions and mineral–melt equilibria inthe mildly alkalic basalts from the 25 Ma Mont Crozier sectionon the Kerguelen Archipelago are used to estimate the depthsat which magmas stalled and crystallized and to constrain therole of crustal structure in the evolution of magmas producedby the Kerguelen mantle plume. The Crozier section, of nearly1000 m height, consists of variably porphyritic flows (up to21 vol. % phenocrysts), dominated by plagioclase ± clinopyroxene± olivine ± Fe–Ti oxides. Feldspars showan extreme range of compositions from high-Ca plagioclase (An88)to sanidine and variable textures that are related to extensivefractionation, degassing, and mixing in relatively low-pressure(sub-volcanic) magma chambers. Although clinopyroxene is a minorphenocryst type (0–3 vol. %), its non-quadrilateral components,principally Al (1·9–8·6 wt % Al2O3), varywidely. The results of clinopyroxene–liquid thermobarometryand clinopyroxene structural barometry indicate that the Croziermagmas crystallized at pressures ranging from  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号