首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   5篇
地质学   5篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2004年   2篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
This study is a search for a genetic relationship between Pb sulphide ore and igneous rocks in the region of Mount Isa, Queensland. The approach involves derivation of Pb isotope initial ratios by the whole-rock isochron method, and comparison of the initial ratios (Pb206/Pb204, Pb207/Pb204 and Pb208/Pb204) with the isotopic composition of the ore Pb. Data are reported for four igneous units; Kalkadoon granodiorite, Kalkadoon adamellite, Sybella granite and Eastern Creek volcanics. The results display considerable scatter for each of the units, and reveal the effects of recent surficial loss of U. The positioning of isochrons is aided by previous Rb-Sr geochronological data wherever possible. Comparison of initial ratios and ore Pb suggests that none of the igneous rock units is co-genetic with the ore deposit. Both phases of the Sybella Granite are more radiogenic and are apparently younger than the ore Pb. The Kalkadoon Granite is possibly related to the ore through some post-emplacement process of extraction and transport of Pb (e.g. by erosion or by anatectic magma generation) to the present site of the orebodies.  相似文献   
2.
Probabilistic domain decomposition is proposed as a novel method for solving the two-dimensional Maxwell’s equations as used in the magnetotelluric method. The domain is split into non-overlapping sub-domains and the solution on the sub-domain boundaries is obtained by evaluating the stochastic form of the exact solution of Maxwell’s equations by a Monte-Carlo approach. These sub-domains can be naturally chosen by splitting the sub-surface domain into regions of constant (or at least continuous) conductivity. The solution over each sub-domain is obtained by solving Maxwell’s equations in the strong form. The sub-domain solver used for this purpose is a meshless method resting on radial basis function-based finite differences. The method is demonstrated by solving a number of classical magnetotelluric problems, including the quarter-space problem, the block-in-half-space problem and the triangle-in-half-space problem.  相似文献   
3.
4.
5.
We investigate the use of general, non- l 2 measures of data misfit and model structure in the solution of the non-linear inverse problem. Of particular interest are robust measures of data misfit, and measures of model structure which enable piecewise-constant models to be constructed. General measures can be incorporated into traditional linearized, iterative solutions to the non-linear problem through the use of an iteratively reweighted least-squares (IRLS) algorithm. We show how such an algorithm can be used to solve the linear inverse problem when general measures of misfit and structure are considered. The magnetic stripe example of Parker (1994 ) is used as an illustration. This example also emphasizes the benefits of using a robust measure of misfit when outliers are present in the data. We then show how the IRLS algorithm can be used within a linearized, iterative solution to the non-linear problem. The relevant procedure contains two iterative loops which can be combined in a number of ways. We present two possibilities. The first involves a line search to determine the most appropriate value of the trade-off parameter and the complete solution, via the IRLS algorithm, of the linearized inverse problem for each value of the trade-off parameter. In the second approach, a schedule of prescribed values for the trade-off parameter is used and the iterations required by the IRLS algorithm are combined with those for the linearized, iterative inversion procedure. These two variations are then applied to the 1-D inversion of both synthetic and field time-domain electromagnetic data.  相似文献   
6.
A finite-element method for computing the electric field in a 3-D conductivity model of the Earth for plane wave sources, thus enabling magnetotelluric responses to be calculated, is presented. The method incorporates in the iterative solution of the electric-field system of equations the divergence correction technique introduced for finite-difference solutions by Smith (1996). The correction technique accelerates the development of the discontinuity of the normal component of the approximate electric field across conductivity discontinuities. The convergence rate of the iterative solution is improved significantly, especially for low frequencies. The correction technique involves computing the divergence of the current density for the approximate electric field, computing the static potential whose source is this divergence of the current density, and ‘correcting’ the approximate electric field by subtracting from it the gradient of the potential. This is repeated at regular intervals during the iterative solution of the electric-field system of equations. For the method presented here, the Earth model is discretised using a rectilinear mesh comprising uniform cells. Edge-element basis functions are used to approximate the electric field and nodal basis functions are used to approximate the correction potential. The Galerkin method is used to derive the systems of equations for the approximate electric field and correction potential from the respective differential equations. A bi-conjugate gradient solver was found to be adequate for the system of equations for the correction potential; a generalised minimum residual solver was found to be better for the electric-field system of equations. The method is illustrated using the COMMEMI 3D-1A and 3D-2A models.  相似文献   
7.
8.
9.
Reduction to pole and other transformations of total field magnetic intensity data are often challenging to perform at low magnetic latitudes, when remanent magnetization exists, and when large topographic relief exists. Several studies have suggested the use of inversion-based equivalent source methods for performing such transformations under those complicating factors. However, there has been little assessment of the importance of erroneous edge effects that occur when fundamental assumptions underlying the transformation procedures are broken. In this work we propose a transformation procedure that utilizes magnetization vector inversion, inversion-based regional field separation and equivalent source inversion on unstructured meshes. We investigated whether edge effects in transformations could be reduced by performing a regional separation procedure prior to equivalent source inversion. We applied our proposed procedure to the transformation of total field magnetic intensity to all three Cartesian magnetic field components using a complicated synthetic example based on a real geological scenario from mineral exploration. While the procedure performed acceptably on this test example, the results could be improved. We pose many questions regarding the various choices and control parameters used throughout the procedure, but we leave the investigation of those questions to future work.  相似文献   
10.
频率域地空电磁探测方法是指在地面布设人工场源,在空中测量电磁场的一种高效的地球物理勘探技术.该方法具有大范围、高通过性、快速测量的优势,尤其适合崎岖山地、沙漠、沼泽、海陆交互带等复杂地貌区域的资源勘查.但是这些地区的地形起伏通常较大,因此分析地形对地空电磁响应的影响具有重要意义.本文利用有限元法对频率域地空电磁响应进行了正演计算,分析了起伏地表条件下的频率域地空电磁响应特征.首先利用傅里叶变换将2.5维问题转化成二维问题,利用伽辽金加权余量法推导了相应的离散有限元方程组.采用任意四边形单元对区域进行不均匀网格剖分,源和异常体附近网格加密处理,保证计算精度,远离目标区域网格逐渐稀疏,模拟无穷远边界,降低对计算资源的要求.在单元内进行插值,将有限元方程组变换为线性方程组,采用总场算法,利用具有一定面积的伪δ函数表达源电流分布,源项近似为分布在以电偶极源为中心的25个节点上.通过求解线性方程组得到波数域电磁响应,再对波数域电磁场响应进行反傅里叶变换从而获得空间域2.5维频率域电磁场值.通过对比2.5维正演结果与均匀半空间解析解,验证了本文算法的精度,同时本文还对地空电磁场与地面电磁场的响应特性进行了对比.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号