首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   4篇
海洋学   1篇
  2008年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   
2.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   
3.
Bathymetric charts of the continental slope of the northwestern Gulf of Mexico reveal the presence of over 90 intraslope basins with relief in excess of 150 m. The evolution and the general configuration of the basins are a function of halokinesis of allochthonous salt. Intraslope-interlobal and intraslope-superlobal basins occupy the upper and lower continental slope, respectively. Other structures on the slope associated with salt tectonics are the Sigsbee Escarpment, the seaward edge of the Sigsbee salt nappe, and the Alaminos and Keathley canyons. Major erosional features are the Mississippi Canyon and portions of a submarine canyon on the southern extreme of the Sigsbee Escarpment.  相似文献   
4.
T. C. Feeley  G. S. Winer 《Lithos》1999,46(4):2249-676
St. Paul Island is the youngest volcanic center in the Bearing Sea basalt province. We have undertaken a field, petrographic, and geochemical study of select St. Paul volcanic rocks in order to better understand their differentiation; specifically, to test the hypothesis that magmas erupted from individual Bering Sea basaltic volcanoes are not related by shallow-level processes such as crystal fractionation. Petrographically, all of the St. Paul volcanic rocks are olivine-, plagioclase-, and clinopyroxene-phyric. Textural features and modal contents of olivine phenocrysts, however, vary widely throughout the spectrum of basalt compositions. Although differing in size and abundance, olivine phenocrysts in all rock compositions are euhedral and commonly skeletal, suggesting rapid growth during ascent or eruptive quenching. None, however, display reaction textures with surrounding groundmass liquid. Compositionally, the St. Paul volcanic rocks are basalts and tephritic basalts and all have high contents of normative nepheline (8% to 16%). Concentrations of many major and incompatible trace elements display no clear correlations with bulk-rock SiO2 and MgO contents or modal abundances of phenocrysts, suggesting that much of the compositional diversity of these magmas reflects variable mantle sources and degrees of partial melting. Similarly, chondrite-normalized REE patterns show variable degrees of light REE enrichment (Lan=70–90) that do not correlate with bulk-rock mg-numbers. In contrast, concentrations of compatible trace elements (Ni, Cr, and Co) are positively correlated with MgO contents and modal percentages of olivine phenocrysts. Maximum forsterite contents of olivine phenocryst cores in most St. Paul rocks decrease with decreasing bulk-rock mg-number and are similar to the calculated equilibrium range. This is evidence that the high mg-numbers are magmatic and do not result from olivine accumulation. Instead, major and compatible trace element mass balance calculations support derivation of the low mg-number lavas from the high mg-number lavas mainly by olivine fractionation, which, in turn, implies that St. Paul magmas may have temporarily resided in crustal magma chambers prior to eruption.  相似文献   
5.
This study reports oxygen isotope ratios determined by laserfluorination of mineral separates (mainly plagioclase) frombasaltic andesitic to rhyolitic composition volcanic rocks eruptedfrom the Lassen Volcanic Center (LVC), northern California.Plagioclase separates from nearly all rocks have 18O values(6·1–8·4) higher than expected for productionof the magmas by partial melting of little evolved basalticlavas erupted in the arc front and back-arc regions of the southernmostCascades during the late Cenozoic. Most LVC magmas must thereforecontain high 18O crustal material. In this regard, the 18O valuesof the volcanic rocks show strong spatial patterns, particularlyfor young rhyodacitic rocks that best represent unmodified partialmelts of the continental crust. Rhyodacitic magmas erupted fromvents located within 3·5 km of the inferred center ofthe LVC have consistently lower 18O values (average 6·3± 0·1) at given SiO2 contents relative to rockserupted from distal vents (>7·0 km; average 7·1± 0.1). Further, magmas erupted from vents situated attransitional distances have intermediate values and span a largerrange (average 6·8 ± 0·2). Basaltic andesiticto andesitic composition rocks show similar spatial variations,although as a group the 18O values of these rocks are more variableand extend to higher values than the rhyodacitic rocks. Thesefeatures are interpreted to reflect assimilation of heterogeneouslower continental crust by mafic magmas, followed by mixingor mingling with silicic magmas formed by partial melting ofinitially high 18O continental crust (9·0) increasinglyhybridized by lower 18O (6·0) mantle-derived basalticmagmas toward the center of the system. Mixing calculationsusing estimated endmember source 18O values imply that LVC magmascontain on a molar oxygen basis approximately 42 to 4% isotopicallyheavy continental crust, with proportions declining in a broadlyregular fashion toward the center of the LVC. Conversely, the18O values of the rhyodacitic rocks suggest that the continentalcrust in the melt generation zones beneath the LVC has beensubstantially modified by intrusion of mantle-derived basalticmagmas, with the degree of hybridization ranging on a molaroxygen basis from approximately 60% at distances up to 12 kmfrom the center of the system to 97% directly beneath the focusregion. These results demonstrate on a relatively small scalethe strong influence that intrusion of mantle-derived maficmagmas can have on modifying the composition of pre-existingcontinental crust in regions of melt production. Given thisresult, similar, but larger-scale, regional trends in magmacompositions may reflect an analogous but more extensive processwherein the continental crust becomes progressively hybridizedbeneath frontal arc localities as a result of protracted intrusionof subduction-related basaltic magmas. KEY WORDS: oxygen isotopes; phenocrysts; continental arc magmatism; Cascades; Lassen  相似文献   
6.
The Egan Range volcanic complex lies 30 km northwest of Ely, on the edge of a highly extended domain in east-central Nevada. It consists mainly of lavas with subordinate tuffs and sedimentary rocks. The rocks are divided into three stratigraphic and lithologic groups that correlated with widespread middle Tertiary volcanic rocks associated with early stages of extension in the region. Volcanic rocks of the early group are predominantly two-pyroxene dacite and andesite lavas, all of which contain quenched, mafic inclusions and have compositions indicating they were derived by mixing between a contaminated mantle melt and a rhyodacitic crustal component. Rocks of the middle group are relatively homogeneous biotite, hornblende dacite and rhyodacite lavas. Elevated compatible and incompatible element concentrations and straight-line correlations of compositional data in the early and middle groups support a simple mixing model. Minor fractionation of clinopyroxene is required to explain some low Cr concentrations. Major element variations of the late group can be successfully modeled by crystal fractionation of observed phenocrysts accompanied by moderate assimilation of a crustal component to account for elevated Rb, Th, U, and light rare earth element concentrations. Rocks of all three groups appear to be related to a common primary magma type, the composition of which can be modeled from the mafic inclusions in the early group. Low Ni and Mg contents in the inclusions indicate that olivine was fractionated prior to their participation in mixing of early group magmas. Based on estimated volumes of volcanic rocks in the Egan Range volcanic complex and in the region, and on the petrologic models for each group, a significant amount of basalt must have been added to the crust during this middle Tertiary magmatic episode.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号