首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26070篇
  免费   4893篇
  国内免费   6232篇
测绘学   1140篇
大气科学   5817篇
地球物理   7048篇
地质学   12880篇
海洋学   2836篇
天文学   1331篇
综合类   3040篇
自然地理   3103篇
  2024年   69篇
  2023年   379篇
  2022年   1087篇
  2021年   1187篇
  2020年   1022篇
  2019年   1151篇
  2018年   1456篇
  2017年   1305篇
  2016年   1558篇
  2015年   1238篇
  2014年   1554篇
  2013年   1472篇
  2012年   1351篇
  2011年   1380篇
  2010年   1482篇
  2009年   1460篇
  2008年   1320篇
  2007年   1273篇
  2006年   1019篇
  2005年   884篇
  2004年   763篇
  2003年   793篇
  2002年   723篇
  2001年   692篇
  2000年   917篇
  1999年   1388篇
  1998年   1115篇
  1997年   1110篇
  1996年   1001篇
  1995年   875篇
  1994年   821篇
  1993年   694篇
  1992年   544篇
  1991年   430篇
  1990年   322篇
  1989年   315篇
  1988年   271篇
  1987年   173篇
  1986年   145篇
  1985年   106篇
  1984年   67篇
  1983年   56篇
  1982年   68篇
  1981年   54篇
  1980年   27篇
  1979年   27篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1958年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Multi-conjugate adaptive optics(MCAO),consisting of several deformable mirrors(DMs),can significantly increase the adaptive optics(AO)correction field of view.Current MCAO can be realized by either star-oriented or layer-oriented approaches.For solar AO,ground-layer adaptive optics(GLAO)can be viewed as an extreme case of layer-oriented MCAO in which the DM is conjugated to the ground,while solar tomography adaptive optics(TAO)that we proposed recently can be viewed as star-oriented MCAO with only one DM.Solar GLAO and TAO use the same hardware as conventional solar AO,and therefore it will be important to see which method can deliver better performance.In this article,we compare the performance of solar GLAO and TAO by using end-to-end numerical simulation software.Numerical simulations of TAO and GLAO with different numbers of guide stars are conducted.Our results show that TAO and GLAO produce the same performance if the DM is conjugated to the ground,but TAO can only generate better performance when the DM is conjugated to the best height.This result has important application in existing one-DM solar AO systems.  相似文献   
2.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
3.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
4.
Support Vector Machine (SVM) is a popular data mining technique, and it has been widely applied in astronomical tasks, especially in stellar spectra classification. Since SVM doesn’t take the data distribution into consideration, and therefore, its classification efficiencies can’t be greatly improved. Meanwhile, SVM ignores the internal information of the training dataset, such as the within-class structure and between-class structure. In view of this, we propose a new classification algorithm-SVM based on Within-Class Scatter and Between-Class Scatter (WBS-SVM) in this paper. WBS-SVM tries to find an optimal hyperplane to separate two classes. The difference is that it incorporates minimum within-class scatter and maximum between-class scatter in Linear Discriminant Analysis (LDA) into SVM. These two scatters represent the distributions of the training dataset, and the optimization of WBS-SVM ensures the samples in the same class are as close as possible and the samples in different classes are as far as possible. Experiments on the K-, F-, G-type stellar spectra from Sloan Digital Sky Survey (SDSS), Data Release 8 show that our proposed WBS-SVM can greatly improve the classification accuracies.  相似文献   
5.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
6.
This paper presents a detailed numerical study of the retrogressive failure of landslides in sensitive clays. The dynamic modelling of the landslides is carried out using a novel continuum approach, the particle finite element method, complemented with an elastoviscoplastic constitutive model. The multiwedge failure mode in the collapse is captured successfully, and the multiple retrogressive failures that have been widely observed in landslides in sensitive clays are reproduced with the failure mechanism, the kinematics, and the deposition being discussed in detail. Special attention has been paid to the role of the clay sensitivity on each retrogressive failure as well as on the final retrogression distance and the final run‐out distance via parametric studies. Moreover, the effects of the viscosity of sensitive clays on the failure are also investigated for different clay sensitivities.  相似文献   
7.
Shallow water flow (SWF), a disastrous geohazard in the continental margin, has threatened deepwater drilling operations. Under overpressure conditions, continual flow delivering unconsolidated sands upward in the shallow layer below the seafloor may cause large and long-lasting uncontrolled flows; these flows may lead to control problems and cause well damage and foundation failure. Eruptions from over-pressured sands may result in seafloor craters, mounds, and cracks. Detailed studies of 2D/3D seismic data from a slope basin of the South China Sea (SCS) indicated the potential presence of SWF. It is commonly characterized by lower elastic impedance, a higher Vp/Vs ratio, and a higher Poisson’s ratio than that for the surrounding sediments. Analysis of geological data indicated the SWF zone originated from a deepwater channel system with gas bearing over-pressured fluid flow and a high sedimentation rate. We proposed a fluid flow model for SWF that clearly identifies its stress and pressure changes. The rupture of previous SWF zones caused the fluid flow that occurred in the Baiyun Sag of the northern SCS.  相似文献   
8.
Nonlinear force-free magnetic field(NLFFF) extrapolation based on the observed photospheric magnetic field is the most important method to obtain the coronal magnetic field nowadays.However, raw photospheric magnetograms contain magnetic forces and small-scale noises, and fail to be consistent with the force-free assumption of NLFFF models. The procedure for removing the forces and noises in observed data is called preprocessing. In this paper, we extend the preprocessing code of Jiang Feng to spherical coordinates for a full sphere. We first smooth the observed data with Gaussian smoothing, and then split the smoothed magnetic field into a potential field and a non-potential field.The potential part is computed by a numerical potential field model, and the non-potential part is preprocessed using an optimization method to minimize the magnetic forces and magnetic torques. Applying the code to synoptic charts of the vector magnetic field from SDO/HMI, we find it can effectively reduce the noises and forces, and improve the quality of data for a better input which will be used for NLFFF extrapolations applied to the global corona.  相似文献   
9.
In the metropolises of China, the metro plays an increasingly important role in commuting because of its efficiency, affordability, and cleanliness. This paper attempts to explore the relationship between walking access distance to metro stations and the demographic characteristics of passengers, such as age, monthly income, travel frequency, gender, and travel purpose, as well as the influence of the urban context. Nanjing Metro Line 2 is selected as the case study. By using different methods such as a questionnaire survey, spatial decay function, analysis of covariance (ANOVA), network analysis of routes, and K-means cluster analysis, it is suggested that demographic characteristics have a significant impact on the pedestrian walking distance, with the exception of gender. Furthermore, the paper finds a spatial decay effect in walking access distance, the decay rate of which, however, varies across stations. Terminal stations have a larger pedestrian catchment area than in regular and exchange stations. Moreover, the passengers of Nanjing Metro Line 2 can be classified into six groups according to their demographic characteristics, among which education and occupation are vital indicators in determining their willingness to walk to the stations. Middle-class passengers have a higher dependence on the metro and tend to walk longer than other groups do. This study provides an important reference for planners and transport sectors to optimize land-use and transport infrastructures.  相似文献   
10.
Northeast China experiences severe atmospheric pollution, with an increasing occurrence of heavy haze episodes. However, the underlying forces driving haze formation during different seasons are poorly understood. In this study, we explored the spatio-temporal characteristics and causes of haze events in Northeast China by combining a range of data sources(i.e., ground monitoring, satellite-based products, and meteorological products). It was found that the ‘Shenyang-Changchun-Harbin(SCH)'city belt was the most polluted area in the region on an annual scale. The spatial distribution of air quality index(AQI) values had a clear seasonality, with the worst pollution occurring in winter, an approximately oval-shaped polluted area around western Jilin Province in spring, and the best air quality occurring in summer and most of the autumn. The three periods that typically experienced intense haze events were Period I from mid-October to mid-November(i.e., late autumn and early winter), Period II from late-December to February(i.e., the coldest time in winter), and Period III from April to mid-May(i.e., spring). During Period I, strong PM_(2.5) emissions from seasonal crop residue burning and coal burning for winter heating were the dominant reasons for the occurrence of extreme haze events(AQI 300). Period II had frequent heavy haze events(200 AQI 300) in the coldest months of January and February, which were due to high PM_(2.5) emissions from coal burning and vehicle fuel consumption, a lower atmospheric boundary layer, and stagnant atmospheric conditions. Haze events in Period III, with high PM_(10) concentrations, were primarily caused by the regional transportation of windblown dust from degraded grassland in central Inner Mongolia and bare soil in western Jilin Province. Local agricultural tilling could also release PM_(10) and enhance the levels of windblown dust from tilled soil. Better control of coal burning, fuel consumption, and crop residue burning in winter and autumn is urgently needed to address the haze problem in Northeast China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号