首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   4篇
地球物理   8篇
地质学   23篇
  2022年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2012年   3篇
  2010年   8篇
  2009年   1篇
  2007年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1981年   1篇
  1948年   2篇
  1941年   1篇
排序方式: 共有31条查询结果,搜索用时 140 毫秒
1.
The application of both thermoluminescence and infrared stimulated luminescence dating to the extensively studied “classical” Hungarian loess/paleosol sequences from Basaharc, Mende, and Paks provides a reliable chronological framework and climatostratigraphic reconstruction for the last interglacial/glacial cycle. Based on this combined luminescence dating study a new chronology is proposed for the “Young Loess” in Hungary. Luminescence dating suggests that the loess below the MF2 horizon formed during the penultimate glaciation. The MF1 horizon probably formed during an interstade within oxygen isotope stage 3. For the youngest loess, overlying MF1, a very high accumulation rate was determined. Large time gaps occur above MF2 and MF1, indicating that most of the record of the last glaciation is missing in the standard sections at Basaharc, Mende, and Paks. Either large discontinuities or a very low accumulation rate occurred in all three type sections during the soil-forming periods. High-resolution studies of climatic proxies using this combined luminescence dating approach provide a reliable chronological framework for loess and loess derivatives of the last glacial cycle in Hungary, although a precise and complete chronostratigraphic reconstruction cannot be achieved from the incomplete records found at these sites.  相似文献   
2.
The Kärlich–Seeufer archaeological site in Germany's central Rhineland was excavated between 1980 and 1992. The site provides evidence for hominid activity during a Middle Pleistocene interglaciation known up to now only from the Kärlich clay pit and therefore defined as the Kärlich Interglaciation, which is considered to be post-Cromer IV and pre-Holstein (sensu stricto) in age. The site is characterized by Acheulean artifacts, a fauna dominated byElephas (Palaeoloxodon) antiquus,and a unique and outstanding preservation of wooden and other palaeobotanical remains. Assuming all finds are associated, the site previously was interpreted as an elephant hunting camp with a wooden structure, together with wood and bone implements preservedin situ.Recent analysis of the same features has shown that the site can also be interpreted as a reworked archaeological sample. Hominid occupation occurred in the vicinity of a small lake with prevailing meso-oligotrophic conditions. Expanding boreal forests and fen vegetation characterized the landscape.  相似文献   
3.
The exact number, extent and chronology of the Middle Pleistocene Elsterian and Saalian glaciations in northern Central Europe are still controversial. This study presents new luminescence data from Middle Pleistocene ice‐marginal deposits in northern Germany, giving evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). The study area is located in the Leine valley south of the North German Lowlands. The data set includes digital elevation models, high‐resolution shear wave seismic profiles, outcrop and borehole data integrated into a 3D subsurface model to reconstruct the bedrock relief surface. For numerical age determination, we performed luminescence dating on 12 ice‐marginal and two fluvial samples. Luminescence ages of ice‐marginal deposits point to at least two ice advances during MIS 12 and MIS 10 with ages ranging from 461±34 to 421±25 ka and from 376±27 to 337±21 ka. The bedrock relief model and different generations of striations indicate that the older ice advance came from the north and the younger one from the northeast. During rapid ice‐margin retreat, subglacial overdeepenings were filled with glaciolacustrine deposits, partly rich in re‐worked Tertiary lignite and amber. During MIS 8 and MIS 6, the study area may have been affected by two ice advances. Luminescence ages of glaciolacustrine delta deposits point to a deposition during MIS 8 or early MIS 6, and late MIS 6 (250±20 to 161±10 ka). The maximum extent of both the Elsterian (MIS 12 and MIS 10) and Saalian glaciations (MIS 8? and MIS 6) approximately reached the same position in the Leine valley and was probably controlled by the formation of deep proglacial lakes in front of the ice sheets, preventing a further southward advance.  相似文献   
4.
This paper provides insight into the fate of Late Weichselian and Early Holocene sediments accumulated in the German sector of the southern North Sea. A combination of optically stimulated luminescence (OSL) dating and radiocarbon dating was applied to set up the chronology. Seven cores were studied to obtain ten quartz OSL samples and ten radiocarbon samples. The core locations were chosen along a southeast to northwest transect along the western side of the Elbe palaeovalley, giving a good coverage of the entire German North Sea area. All samples for OSL dating showed a significant scatter in the equivalent dose (De) distribution of quartz due to heterogeneous bleaching. The Minimum Age Model (MAM-3) was found to be the most suitable to extract true burial ages. It was inferred from the study that sedimentation did still occur during the late deglaciation period in many areas. These are mainly Late Weichselian glaciofluvial or glaciolacustrine sediments directly overlain by early Holocene fluvial and/or transgressive deposits and followed by modern marine sands. However, considerable late Weichselian erosion or a possible period of non-deposition was observed in the highland area to the northeast of the Dogger Bank and a small discontinuity in the near-shore region was noticed, probably due to early Holocene fluvial erosion. Relicts of a palaeo-river bank or terrace were identified in core 14VC to the east of the Dogger Bank. A possible interpretation of the Pleistocene-Holocene interface along the core transect is provided based on lithology and measured OSL and radiocarbon ages.  相似文献   
5.
In Vietnam, the coastal sand barriers and dunes located in front of the steep slopes of the high rising Truong Son Mountains are sensitive to climate and environment change and give evidence for Holocene sea-level rise. The outer barrier sands were deposited shortly before or contemporaneous with the local sea-level high stand along the Van Phong Bay postdating the last glacial maximum (LGM). Optically stimulated luminescence (OSL) dating yielded deposition ages ranging from 8.3 ± 0.6 to 6.2 ± 0.3 ka for the stratigraphically oldest exposed barrier sands. Further periods of sand accumulation took place between 2.7 and 2.5 ka and between 0.7 and 0.5 ka. The youngest period of sand mobilisation was dated to 0.2 ± 0.01 ka and is most likely related to reworked sand from mining activities. At the Suoi Tien section in southern central Vietnam, the deposition of the inner barrier sands very likely correlate with an earlier sea-level high stand prior to the last glaciation. OSL age estimates range from 276 ± 17 to 139 ± 15 ka. OSL dating significantly improves our knowledge about the sedimentary dynamics along the coast of Vietnam during the Holocene.  相似文献   
6.
During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.  相似文献   
7.
8.
Loess/palaeosol sequences from the Loess plateau in China were investigated by combined infrared optically stimulated luminescence (IRSL) and thermoluminescence (TL) dating techniques in order to study the luminescence properties of the loessic sediments and to provide a direct chronological link for correlation and position of the last interglacial soil in Central Asia and the Loess plateau in China. Sensitivity changes were found for all samples through artificial bleaching of the samples. The greatest sensitivity changes, of up to 50%, were found for very old loess samples designated to be older than the Matu-yama/Brunhes magnetic boundary and hence older than 788,000±1,800 years. The upper dating limit, as investigated by the very old loess samples, ranges from 250,000 to 300,000 years, if the TL additive dose method is applied. The chronological position of the last interglacial soil S1 at the section near Lanzhou indicates luminescence age estimates ranging from 82,000 to 75,000 years for the marine-isotope stage 5 to 4 transition. However, the loess from below S1 yielded luminescence age estimates between 153,200±14,200 and 110,100±20,100 years for TL and IRSL additive dose methods, respectively. Thus, a direct correlation between the S1 and the first intercalated pedocomplex PC1 in Central Asia is most likely. Received: 31 March 1998 / Accepted: 25 October 1998  相似文献   
9.
The history of sea‐level change and sediment accumulation since the last deglaciation along the German North Sea coast is still controversial because of a limitation in the quantity and quality of chronological data. In the current study, the chronology of a 16‐ka coastal sedimentary record from the Garding‐2 core, retrieved from the Eiderstedt Peninsula in Schleswig‐Holstein, northern Germany, was established using OSL and AMS 14C dating techniques. The robust chronology using 14 radiocarbon and 25 OSL dates from the Garding‐2 core is the first long‐term record that covers the Holocene as well as the last deglaciation period in one succession in the German North Sea area. It provides a new insight into understanding the Holocene transgression and coastal accumulation histories. The combined evidence from the sedimentology and chronology investigations indicates that an estuarine environment dominated in Eiderstedt Peninsula from 16 to 13 ka, followed by a depositional hiatus between 13 and 8.3 ka, attributed to erosion caused by the Holocene transgression; the onset of the Holocene transgression at the core site occurred at around 8.3 ka. The sea level continued to rise with a decelerated rate until around 3 ka. Since 3 ka, the shoreline has begun to prograde. Foreshore (tidal flat) sediments have been deposited at the drilling site with a very high sedimentation rate of about 10 m ka?1. At around 2 ka, a sandy beach deposit accumulated in the sedimentary succession, indicating that the coastline shifted landward, which may represent a small‐scale transgression in the late Holocene. At around 1.5 ka, terrestrial clastic sediment started to accumulate, indicating a retreat of the relative sea level in this area, which may be related to local diking activities undertaken since the 11th century.  相似文献   
10.
This paper focuses upon the youngest terraces of the Moselle and its tributary the Meurthe (NE France and SW Germany). It includes research on several sections, in particular the key sections of Golbey‐Pré Droué and Thörnich‐Hochrech (located in the vicinity of the Vosges Massif and in the Rhenish Massif, respectively), and the use of the Optically Stimulated Luminescence (OSL) dating method. Our investigations made it possible to obtain a more robust chronostratigraphical framework and to update the previous model of fluvial response to climate change. The results demonstrate that the Moselle terrace M3 (first terrace formed after the capture of the Upper Moselle by the Palaeo‐Meurthe) has the same age from the Vosges to the Rhenish Massif. The formation of this terrace included two main periods of sedimentation attributed to the Late Saalian (MIS 6) and the Early Weichselian (MIS 5), respectively. They were separated by a major episode of fluvial erosion that may be allocated to the MIS 6–5 transition on the basis of chronological and sedimentological evidence. This erosion led to the removal of most of the MIS 6 deposits, whereas the MIS 5 deposits have been widely preserved following the subsequent (MIS 5–4) terrace incision. This evolution somewhat contrasts with that observed in the Sarre valley, the main tributary of the Moselle, and with many fluvial systems in western Europe, which show better preservation of deposits from cold periods. This atypical behaviour is explained by the relationship between the fluvial evolution and the glaciers covering the upper Moselle catchment (Vosges Massif) during the Pleistocene cold periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号