首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2009年   2篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
In this study, the Pietra di Billiemi , a famous dimension stone, is investigated because it records the tectonic evolution of the south Tethys continental margin and preserves a record of major environmental changes occurring near the Triassic/Jurassic boundary. The Pietra di Billiemi is a grey, coarse-grained and clast-supported limestone breccia cropping out in an area of the Palermo Mountains representing a segment of the Apennine–Maghrebian chain in western Sicily. The rock consists of metre-sized to centimetre-sized angular clasts, derived from Upper Triassic sponge boundstones and rudstones, with a differently coloured, silt-grained matrix. Fitted fragments are observed commonly which suggest an in situ origin for the bulk of the breccia. The matrix is characterized by the absence of biogenic components and by variable mineralogy and geochemistry. Petrographic features and Sr-isotope values indicate that the most important and earliest fillings of the breccia consist of black matrix and white matrix temporally referable to Hettangian–Sinemurian times. Clotted micrite, carbonate fluorapatite and abundant pyrite, in addition to relatively high contents of redox-sensitive elements (V, Ni, Zn and S), are consistent with deposition in anoxic conditions that favoured microbial mediation for authigenic carbonate (calcite and dolomite) precipitation in the matrix. As a whole, the Billiemi breccia can be considered a product of tectonic fragmentation of a Tethyan carbonate platform edge around the Triassic/Jurassic boundary, formed when the drowned platform edge was covered by hemipelagic mudstones recording the anoxic conditions existing during Early Jurassic times.  相似文献   
2.
Spatial information on lithofacies from outcrops is paramount for understanding the internal dynamics, external controls and degree of predictability of the facies architecture of shallow‐water carbonate‐platform tops. To quantify the spatial distribution and vertical stacking of lithofacies within an outer‐platform shoal‐barrier complex, integrated facies analysis and digital field technologies have been applied to a high‐relief carbonate platform exposed in the Djebel Bou Dahar (Lower Jurassic, High Atlas, Morocco). The outer platform is characterized by subtidal, cross‐bedded, coarse grainstone to rudstone grading into supratidal, pisoidal packstone‐rudstone with tepees that together formed a 350 to 420 m wide shoal‐barrier belt parallel to the margin. This belt acted as a topographic high separating a restricted lagoon from the subtidal, open marine region. Low‐energy tidal flats developed on the protected flank of the barrier facing the lagoon. Lithofacies patterns were captured quantitatively from outcrop and integrated into a digital outcrop model. The outcrop model enabled rapid visualization of field data and efficient extraction of quantitative data such as widths of facies belts. In addition, the spatial heterogeneity was captured in multiple time slices, i.e. during different phases of cyclic base‐level fluctuations. In general, the lateral continuity of lithofacies is highest when relative water depth increased during flooding of the platform top, establishing low‐energy subtidal conditions across the whole platform, and when the accommodation space was filled with tidal flat facies. Heterogeneity increased during deposition of the relief‐building bar facies that promoted spatial diversification of depositional environments during the initial phases of accommodation space creation. Cycles commonly are composed of a thin transgressive tidal flat unit, followed by coated‐grain rudstone bar facies. Lateral to the bar facies, pisoidal‐grainstone beach deposits accumulated. These bar and beach deposits were overlain by subtidal lagoonal facies or would grow through the maximum flooding and highstand. There the bars either graded into supratidal pisoidal facies with tepees (when accommodation space was filled) or were capped by subaerial exposure (due to a sea‐level fall). Modified embedded Markov analysis was used to test the presence of common ordering in vertical lithofacies stacking in a stationary interval (constant depositional mode). Analysis of individual sections did not reveal any ordering, which may be related to the limited thickness of these sections. Composite sections, however, rejected the null hypothesis of randomness. The addition of stratigraphically significant information to the Markov analysis, such as exposure surfaces and lateral dimensions of facies bodies, strengthens the verdict of unambiguous preferential ordering. Through careful quantitative reconstruction of stratal geometry and facies relationships in fully integrated digital outcrop models, accurate depositional models could be established that enhanced the predictability of carbonate sediment accumulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号