首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   40篇
  国内免费   1篇
测绘学   17篇
大气科学   41篇
地球物理   184篇
地质学   200篇
海洋学   62篇
天文学   159篇
综合类   1篇
自然地理   166篇
  2023年   7篇
  2021年   5篇
  2020年   20篇
  2019年   17篇
  2018年   11篇
  2017年   14篇
  2016年   19篇
  2015年   15篇
  2014年   24篇
  2013年   39篇
  2012年   15篇
  2011年   28篇
  2010年   40篇
  2009年   29篇
  2008年   35篇
  2007年   37篇
  2006年   29篇
  2005年   26篇
  2004年   35篇
  2003年   26篇
  2002年   40篇
  2001年   25篇
  2000年   20篇
  1999年   19篇
  1998年   20篇
  1997年   11篇
  1996年   9篇
  1995年   10篇
  1994年   5篇
  1993年   9篇
  1992年   7篇
  1991年   17篇
  1990年   9篇
  1989年   5篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   13篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   9篇
  1977年   10篇
  1976年   4篇
  1975年   6篇
  1974年   4篇
  1972年   4篇
排序方式: 共有830条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
By using a combination of X-ray (HXIS), H (Haleakala), white-light corona (Solwind), and zodiacal light (Helios) images on 21–22 May, 1980 we demonstrate, and try to explain, the co-existence of a coronal mass ejection with a stationary post-flare coronal arch. The mass ejection was seen, both by Solwind and Helios, in prolongation of the path of a powerful spray, whereas the active region filament did not erupt. A tentative comparison is made with other occurrences of stationary, or quasi-stationary post-flare coronal arches.  相似文献   
5.
6.
We report a ten-year study of the abundance and activity of megabenthos on the Porcupine Abyssal Plain, northeast Atlantic, together with observations on the occurrence of phytodetritus at the deep-sea floor (4850 m). Using the Southampton Oceanography Centre time-lapse camera system, ‘Bathysnap’, we have recorded a radical change in the abundance and activity of megabenthos between the two periods of study (1991–1994 and 1997–2000). In 1991–1994, the larger megabenthos occurred at an abundance of c. 71.6/ha and were dominated by large holothurians. In addition, there were very substantial populations of smaller megabenthic ophiuroids (c. 4979/ha). Together, the total megabenthos are estimated to track over some 17 cm2/m2/d (exploiting 100% of the surface of the seabed in c. 2.5 years). In 1997–2000, the larger megabenthos increased to an abundance of c. 204/ha and were joined by exceptional numbers of a small holothurian species (Amperima rosea, 6457/ha) and ophiuroids (principally Ophiocten hastatum, 53,539/ha). The total megabenthos population was tracking at an estimnated rate of c. 247 cm2/m2/d (exploiting 100% of seabed in just 6 weeks). Coincident with these increases in the abundance and activity of the megabenthos, there were apparently no mass depositions of aggregated phytodetritus to the seabed in the summers of 1997–1999. Mass occurrences of phytodetritus had been noted during the summer months of the three years previously studied (1991, 1993 and 1994), with covering between 50 and 96% of the sediment surface. There is a statistically significant (p<0.02) negative correlation between maximum extent of this seabed cover of phytodetritus and seabed tracking by megabenthos. Additional studies [Lampitt et al., Progr. Ocean. 50 (2001)], indicate that there were no substantial changes in surface ocean primary productivity, in export flux, or in the composition of the flux that might otherwise account for the apparent absence of observable concentrations of phytodetritus during the summers of 1997–1999. We postulate that the marked increase in megabenthic tracking activity resulted in the removal (via consumption, disaggregation, burial etc.) of the bulk of the incoming phytodetrital flux during these years. A simple conceptual model, based on the apparent phytodetrital fluxes observed in 1991 and 1993, suggests that the megabenthos tracking rates estimated for 1997–1999 are sufficient to account for near-total removal of this flux. However, we are not able to estimate other processes removing phytodetritus (i.e. other elements of the benthos) that may also have increased between 1991–1994 and 1997–1999. Other independent studies [e.g. Ginger et al., Progr. Ocean. 50 (2001)] of flux constituents support the possibility that just a few species of megabenthos (e.g. A. rosea, and O. hastatum) could well have consumed a major proportion of the incoming flux and so substantially modified the composition of the organic matter available to other components of the benthos.  相似文献   
7.
8.
Recent research and management plans for seagrass habitats have called for landscape level approaches. The present study examines the spatial utilisation of subtidal seagrass beds by fish and decapods around the coast of Jersey (49°N 02° W). A hierarchical scale of landscape configuration and the plant characteristics of eight seagrass beds were measured and the contributions of these variables as predictors of the properties of the fish and decapod assemblages were evaluated using multiple linear regression models. The results indicated that total diversity had a negative relationship with transect heterogeneity and total species number had a weak negative association with increasing fragmentation. Both total diversity and total species number showed a positive relationship with depth. In fact, in all models of species number and densities, values were higher in deeper seagrass beds. Total decapod density increased with aggregation of seagrass patches within a landscape. In addition to landscape configuration, smaller-scale structural changes in both canopy height and epiphyte load appeared to influence densities of decapod crustaceans. At night, fewer patterns could be explained by the independent variables in the model.  相似文献   
9.
10.
Th sorption and export models in the water column: A review   总被引:2,自引:3,他引:2  
Over the past few decades, the radioisotope pair of 238U / 234Th has been widely and increasingly used to describe particle dynamics and particle export fluxes in a variety of aquatic systems. The present paper is one of five review articles dedicated to 234Th. It is focused on the models associated with 234Th whereas the companion papers (same issue) are focused on present and future methodologies and techniques (Rutgers van der Loeff et al.), C / 234Th ratios (Buesseler et al.), 234Th speciation (Santschi et al.) and present and future applications of 234Th [Waples, J.T., Benitez-Nelson, C.R., Savoye, N., Rutgers van der Loeff, M., Baskaran, M., Gustafsson, Ö., this issue. An Introduction to the application and future use of 234Th in aquatic systems. Marine Chemistry, FATE special issue]. In this paper, we review current 234Th scavenging models and discuss the relative importance of the non-steady state and physical terms associated with the most commonly used model to estimate 234Th flux. Based on this discussion we recommend that for future work the use of models should be accompanied by a discussion of the effect that model and data uncertainty have on the model results. We also suggest that future field work incorporate repeat occupations of sample sites on time scales of 1–4 weeks in order to evaluate steady state versus non-steady state estimates of 234Th export, especially during high flux events (> ca. 800 dpm m− 2 d− 1). Finally, knowledge of the physical oceanography of the study area is essential, particularly in ocean margins and in areas of established upwelling (e.g., Equatorial Pacific). These suggestions will greatly enhance the application of 234Th as a tracer of particle dynamics and flux in more complicated regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号