首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
大气科学   1篇
地球物理   8篇
地质学   8篇
自然地理   1篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1995年   1篇
  1988年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The Dead Sea is a terminal lake of one of the largest hydrological systems in the Levant and may thus be viewed as a large rain gauge for the region. Variations of its level are indicative of the climate variations in the region. Here, we present the decadal- to centennial-resolution Holocene lake-level curve of the Dead Sea. Then we determine the regional hydroclimatology that affected level variations. To achieve this goal we compare modern natural lake-level variations and instrumental rainfall records and quantify the hydrology relative to lake-level rise, fall, or stability. To quantify that relationship under natural conditions, rainfall data pre-dating the artificial Dead Sea level drop since the 1960s are used. In this respect, Jerusalem station offers the longest uninterrupted pre-1960s rainfall record and Jerusalem rains serve as an adequate proxy for the Dead Sea headwaters rainfall. Principal component analysis indicates that temporal variations of annual precipitation in all stations in Israel north of the current 200 mm yr−1 average isohyet during 1940–1990 are largely synchronous and in phase (70% of the total variance explained by PC1). This station also represents well northern Jordan and the area all the way to Beirut, Lebanon, especially during extreme drought and wet spells. We (a) determine the modern, and propose the past regional hydrology and Eastern Mediterranean (EM) climatology that affected the severity and length of droughts/wet spells associated with multiyear episodes of Dead Sea level falls/rises and (b) determine that EM cyclone tracks were different in average number and latitude in wet and dry years in Jerusalem. The mean composite sea level pressure and 500-mb height anomalies indicate that the potential causes for wet and dry episodes span the entire EM and are rooted in the larger-scale northern hemisphere atmospheric circulation. We also identified remarkably close association (within radiocarbon resolution) between climatic changes in the Levant, reflected by level changes, and culture shifts in this region.  相似文献   
2.
Evidence of climatic changes is recorded in the salt content of the surface sediments in arid zones. In wetter periods airborne salts are removed downward by leaching to the groundwater, whereas in drier periods they accumulate. The period of salt accumulation in the loessial sediments of the northern Negev is about 10,000 yr. This period represents the recent aridification phase. The beginning of this stretch of time followed the last humid period in the region. Top paleo soil (calcic horizon) found in the region and dated 12,000 yr B.P. is an indicator of this humid period. This article is a contribution from the Agricultural Research Organization, The Volcani Center, Bet Datan, Israel, No. 1751E, 1986 series.  相似文献   
3.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   
4.
We study the geometrical and material conditions which lead to focusing of seismic waves traveling across a concave velocity interface representing the boundary of a sedimentary basin within a denser rock. We approximate, using geometrical analysis for plane-waves, the combination of interface eccentricities and velocity ratios for which the seismic rays converge to a near surface region of the basin. 2-D finite difference modeling is used to compute Peak Ground Velocity (PGV) and spectral amplification across the basin. We show that effective geometrical focusing occurs for a narrow set of eccentricities and velocity ratios, where seismic energy is converged to a region of $\pm $ 0.5 km from surface. This mechanism leads to significant amplification of PGV at the center of the basin, up to a factor of 3; frequencies of the modeled spectrum are amplified up to the corner frequency of the source. Finally, we suggest a practical method for evaluating the potential for effective geometrical focusing in sedimentary basins.  相似文献   
5.
6.
In ancient times human activities were tightly related and sensitive to rainfall amounts and seasonal distribution. East Mediterranean settlements were concentrated around numerous small to large springs, such as the Judean Mountains area. The goals of this study were to determine (a) the sensitivity of total discharge, recession curve, and response time of such springs to annual precipitation patterns, and (b) how spring hydrology responds to series of drought or wet years and to transitions from drought to normal and/or wet episodes (and vice versa). These goals were achieved by setting a finite-element hydro-geological flow model for selected perched springs that characterize the numerous springs throughout the carbonate karst terrain in the Judean Mountains. In addition, we estimated the effect of proposed regional past climate changes on the springs; in so doing, we transfer climate change to community size, livelihood and economic strength that were highly dependent on agricultural productivity. The results of the hydro-geological model revealed that these mountainous communities had the potential to prosper during historically wetter episodes and were probably adapted to short-term variability in annual rainfall. However, moderate to extreme droughts lasting only a few years could have led to a partial or even total abandonment of the springs as focal sites of intensive agricultural production. Spring drying eliminated the primary cause for the location of settlement. This occurred simultaneously in numerous settlements around the mountains of the southern Levant and therefore, must have caused dramatic economic and societal changes in the entire region, perhaps even resonating afar.  相似文献   
7.
Levy  Yehuda  Shalev  Eyal  Burg  Avihu  Yechieli  Yoseph  Gvirtzman  Haim 《Hydrogeology Journal》2021,29(5):1785-1795

A typical fresh–saline water interface in a coastal aquifer is characterized by saline-water circulation below the interface and freshwater flow above. Both flows are perpendicular to the shoreline. The flow pattern near two separated saline lakes is more complicated. For example, in the Middle East, the Dead Sea northern basin and the evaporation ponds of the Dead Sea Works are adjacent to each other but separated. The northern basin level is dropping by 1.1 m/year and the evaporation ponds’ levels are increasing by 0.2 m/year. The fresh–saline water interface in such situation is numerically simulated. Streamlines parallel or semiparallel to the shoreline are significant. Moreover, the fresh–saline water interface intrudes landward adjacent to the higher saline lake and is pushed lakeward adjacent to the lower saline lake. The simulation results support field observations showing that the interface migrates vertically at a faster rate relative to the changes in the water table and the lake levels.

  相似文献   
8.
9.
In this paper we present a detailed record of proxy-climatic events in the coastal belt of the eastern Mediterranean during the past 53,000 years. A sequence of alternating palaeosols, aeolianites, and dune sands, which have been dated by luminescence and by 14C, was studied by the magnetic susceptibility, particle-size distribution, clay mineralogy and soil micromorphology. Thirteen proxy-climatic events, demonstrating fluctuations of relatively dry and wet episodes, were recognized. The soil parent materials, as well as the different soil types, were rated in a semi-quantitative “dry” to “wet” scale. The palaeosol sequence is compared to a proxy-climatic record of oxygen and carbon isotopes in speleothems from a karstic cave in central Israel and to a record of lake levels of Lake Lisan and its successor, which is known as the Dead Sea. A genuine red Mediterranean Soil (Rhodoxeralfs), localy designated as “Hamra Soil” developed during the Last Glacial Stage, from 40 to 12.5 thousand calendar years BP. Climatic fluctuations that were recorded in speleothems and in changing lake levels were not preserved in this soil. During the cold and dry Younger Dryas, ca 12.5 to 11.5 calendar ka BP, a thick bed of loess material, deriving from atmospheric dust of the Sahara and Arabian deserts, covered the entire coastal belt. During this phase Lake Lisan was desiccated and turned into the modern, smaller Dead Sea. During the early Holocene, some 10–7.5 calendar ka BP, a second Red Hamra soil developed in warm and wet environments, associated with a relatively high stand of the Dead Sea level. A depletion of δ18O and a significant enrichment of δ13C in the speleothems were recorded during this episode. This event was in phase with the widespread distribution of freshwater lakes in the Sahara Desert and the accumulation of the S1 Sapropel in the eastern Mediterranean. Several small-scale dry and somewhat wet fluctuations of the Late Holocene, from 7.5 calendar ka BP to the present, were recorded in the coastal belt. Changes in human history, as reflected in archaeological records, are associated with proxy-climatic fluctuations. Periods of desertification and deterioration are coupled with dry episodes; periods of relative human prosperity are coupled with wetter episodes.  相似文献   
10.
The Quaternary deposits in the Galilee coastal plain comprise alternating calcareous sandstone, red loam, dark clay, and uncemented sand. The calcareous sandstone in the lower part of the sequence represents a Pliocene to early Pleistocene marine transgression, and is covered unconformably by the late Quaternary sequence. The base of this sequence has an estimated age of 500,000 yr. It is covered unconformably by marine calcareous sandstone in the west, which represents the global high sea-level stand of isotope stage 7.1, and is known as one of the “Tyrrhenian” events in the Mediterranean area. The overlying members represent the low sea-level stand of stage 6, the first a red paleosol indicating a relatively wet phase and the second an eolianite unit representing a drier phase. The eolianite forms longitudinal, subparallel ridges that formed contemporaneously. The overlying marine sandstone, which contains one of the diagnostic fossils of the “Tyrrhenian” events, the gastropodStrombus buboniusLMK, accumulated during the global high stand of stage 5.5. The last glacial period left no sedimentary record. The Holocene is represented by a marine clay unit that is covered by sand. The present study establishes a complete and detailed chronostratigraphic sequence for an eastern Mediterranean beach, which contains the gastropodS. buboniusLMK.S. buboniuson the Galilee coast is attributed to stage 5.5 and, therefore, establishes an east–west Mediterranean correlation, which can be used for linking Mediterranean events to paleo-sea levels and global climate changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号