首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
地质学   21篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有21条查询结果,搜索用时 250 毫秒
1.
The finite‐element formulation and integration algorithms developed in Part I are used to analyse a number of practical problems involving unsaturated and saturated soils. The formulation and algorithms perform well for all the cases analysed, with the robustness of the latter being largely insensitive to user‐defined parameters such as the number of coarse time steps and error control tolerances. The efficiency of the algorithms, as measured by the CPU time consumed, does not depend on the number of coarse time steps, but may be influenced by the error control tolerances. Based on the analyses presented here, typical values for the error control tolerances are suggested. It is also shown that the constitutive modelling framework presented in Part I can, by adjusting one constitutive equation and one or two material parameters, be used to simulate soils that expand or collapse upon wetting. Treating the suction as a strain variable instead of a stress variable proves to be an efficient and robust way of solving suction‐dependent plastic yielding. Moreover, the concept of the constitutive stress is a particularly convenient way of handling the transition between saturation and unsaturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
3.
This article presents a novel finite element formulation for the Biot equation using low-order elements. Additionally, an extra degree of freedom is introduced to treat the volumetric locking steaming from the effective response of the medium; its balance equation is also stabilized. The accuracy of the proposed formulation is demonstrated by means of numerical analyses.  相似文献   
4.
The behaviour of an instrumented unstable slope in a profile of weathered overconsolidated clay has been analysed. Available field investigation data and laboratory tests were integrated in a coupled hydromechanical model of the slope. Particular attention was given to the unsaturated soil conditions above the water table and to the influence of the rainfall record. Recorded pore-water pressures helped to identify the hydrogeological conditions of the slope. The coupled model was used to compute slope deformations and the variation of safety with time. Actual rainfall records were also integrated into the analysis. Comparison of measurements and calculations illustrate the nature of the slope instability and the complex relationships between mechanical and hydraulic factors. Electronic Publication  相似文献   
5.
The analysis of elasto-plastic boundary value problems using the finite element method involves many discretizations. These lead to the problem of yield surface drift in which the stress state predicted at the end of an elasto-plastic increment of loading does not lie on the current yield surface. As such discrepancies are comulative it is important to ensure that the stresses are corrected back to the yield surface during each increment of loading. In this paper five methods of accounting for this drift are examined. These involve correcting the stresses by projecting back along the plastic flow, the total strain increment and the accumulated effective stress direction. In addition a ‘correct’, method which accounts for the changes in elastic strains which accompany any stress correction is considered. This method is theoretically more sound than the other approximate approaches. All five methods have been used in finite element analyses of the stress changes that occur adjacent to a single pile installed in a uniform deposit of soil on pile loading. The soil was assumed to be normally consolidated and was modelled using a form of modified Cam Clay. Comparison of these results with an analysis, in which yield surface drift was negligible indicated that only the ‘correct’ method and the method involving projecting back along the plastic flow direction give accurate predictions. Substantiai errors occur if the other methods of correcting for yield surface drift are employed. It is recommended that the ‘correct’ method be adopted for finite element calculations.  相似文献   
6.
This paper presents a complete finite‐element treatment for unsaturated soil problems. A new formulation of general constitutive equations for unsaturated soils is first presented. In the incremental stress–strain equations, the suction or the pore water pressure is treated as a strain variable instead of a stress variable. The global governing equations are derived in terms of displacement and pore water pressure. The discretized governing equations are then solved using an adaptive time‐stepping scheme which automatically adjusts the time‐step size so that the integration error in the displacements and pore pressures lies close to a specified tolerance. The non‐linearity caused by suction‐dependent plastic yielding, suction‐dependent degree of saturation, and saturation‐dependent permeability is treated in a similar way to the elastoplasticity. An explicit stress integration scheme is used to solve the constitutive stress–strain equations at the Gauss point level. The elastoplastic stiffness matrix in the Euler solution is evaluated using the suction as well as the stresses and hardening parameters at the start of the subincrement, while the elastoplastic matrix in the modified Euler solution is evaluated using the suction at the end of the subincrement. In addition, when applying subincrementation, the same rate is applied to all strain components including the suction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
Rouainia  Mohamed  Panayides  Stelios  Arroyo  Marcos  Gens  Antonio 《Acta Geotechnica》2020,15(8):2089-2101
Acta Geotechnica - The self-boring pressuremeter (SBP) test was designed to measure in situ engineering properties of the ground with a relatively small amount of disturbance. The properties that...  相似文献   
8.
Engineered barriers are basic elements in the design of repositories for the isolation of high‐level radioactive waste. This paper presents the thermo‐hydro‐mechanical (THM) analysis of a clay barrier subjected to heating and hydration. The study focuses on an ongoing large‐scale heating test, at almost full scale, which is being carried out at the CIEMAT laboratory under well‐controlled boundary conditions. The test is intensely instrumented and it has provided the opportunity to study in detail the evolution of the main THM variables over a long period of time. Comprehensive laboratory tests carried out in the context of the FEBEX and NF‐PRO projects have allowed the identification of the model parameters to describe the THM behaviour of the compacted expansive clay. A conventional THM approach that assumes the swelling clay as a single porosity medium has been initially adopted to analyse the evolution of the test. The model was able to predict correctly the global THM behaviour of the clay barrier in the short term (i.e. for times shorter than three years), but some model limitations were detected concerning the prediction of the long‐term hydration rate. An additional analysis of the test has been carried out using a double structure model to describe the actual behaviour of expansive clays. The double structure model explicitly considers the two dominant pore levels that actually exist in the FEBEX bentonite and it is able to account for the evolution of the material fabric. The simulation of the experiment using this enhanced model provides a more satisfactory reproduction of the long‐term experimental results. It also contributes to a better understanding of the observed test behaviour and it provides a physically based explanation for the very slow hydration of the barrier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
9.
The mechanical behavior of granular materials is characterized by strong nonlinearity and irreversibility. These properties have been differently described by a variety of constitutive models. To test any constitutive model, experimental data relative to the nature of the incremental stress–strain response of the material is desirable. However, this type of laboratory data is scarce because of being expensive and difficult to obtain. The discrete element method has been used several times as an alternative to obtain incremental responses of granular materials. Crushable grains add one extra source of irreversibility to granular materials. Crushability has been variously incorporated into different constitutive models. Again, it will be helpful to obtain incremental responses of crushable granular materials to test these models, but the experimental difficulties are increased. Making use of a recently introduced crushing model for discrete element simulation, this paper presents a new procedure to obtain incremental responses in discrete analogs of granular crushable materials. The parallel probe approach, previously used for uncrushable discrete analogs, is here extended to account for the presence of crushable grains. The contribution of grain crushing to the incremental irreversible strain is identified and separately measured. Robustness of the proposed method is examined in detail, paying particular attention to aspects such as dynamic instability or crushing localization. The proposed procedure is later applied to map incremental responses of a discrete analog of Fontainebleau sand on the triaxial plane. The effect of stress ratio and granular state on plastic flow characteristics is highlighted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
A large proportion of the constitutive models currently employed in Geomechanics are based on the theory of plasticity. Owing to the limitations of the data obtained from conventional testing equipment, arbitrary assumptions are often made about the behaviour of the material in generalized stress space. In this paper it is shown that the Lode angle of the stress state at failure in plane strain deformation is dependent on the shape adopted for the plastic potential. The influence of the shape of the plastic potential in the deviatoric plane on the predicted behaviour of two boundary value problems both prior to and at failure is then considered. In both cases a form of the Modified Cam Clay model is employed to describe the soil behaviour, and numerical predictions are obtained using a finite element computer code. For drained situations it is shown that the Lode angle of the stress state at failure has a dominating influence on the predicted behaviour. However, for undrained cases the effects are not so important as long as the correct undrained strength at failure is enforced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号