首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地球物理   2篇
地质学   3篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Dynamic experimental studies on the active lengths of a fixed-head floating pile under static and dynamic loading conditions are reported, focusing on the effects of local nonlinearity and resonant behavior of soil. Results obtained from the laterally loaded model soil-pile system subjected to low-to-high amplitude pile head loading suggest a strong influence of local nonlinearity on the active lengths of the pile. Such obtained experimental results are further compared with the available approximate equations for estimating the active lengths. The comparisons reveal the closeness in values for very low amplitude of loadings, but for intermediate-to-high amplitude of loadings, the experimental values are smaller than predicted by the approximate equations. Moreover, both the static and dynamic active lengths of the pile converge to an approximately identical value of six times the diameter of the pile for intermediate-to-high amplitude of loadings. This suggests that the active lengths of the pile are, in fact, the same for both the static and dynamic loadings, under nonlinear conditions. Additionally, results also suggest that the passive-type failures of soil induced by the applied lateral loadings in front of the pile govern the active lengths. Furthermore, the dynamic active lengths of the pile do not show any significant dependency on the resonance in the soil.  相似文献   
2.
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5° and 10° in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the ’positive’ and ’negative’ cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.  相似文献   
3.
Joint estimation of deformation and blurring parameters from spatial observations is considered. The generalized random field approach to the problem introduced in this paper provides a suitable framework for a technical treatment of these effects in relation to singularity properties of the fields. A mixture of Kullback-Leibler divergence loss functions is formulated in a Bayesian context. Simulations are developed to illustrate the performance of the approach proposed.  相似文献   
4.

Physical-scaled model testing under 1 g conditions is carried out in obtaining the vertical response of fixed head floating-inclined single piles embedded in dry sand. Practical pile inclinations of 5° and 10° besides a vertical pile (0°) subjected to static and dynamic vertical pile head loadings are considered. To account for the effects of soil nonlinearity as well as the soil–pile interface nonlinearity on the response of piles, a range of low-to-high magnitude of pile head displacements is considered for the static case while a varying amplitude of harmonic accelerations for a wide range of frequencies is considered for the dynamic case. Experimental results are obtained in the form of pile head stiffnesses and strains generated in the pile under both the static and dynamic loadings. Results suggest that the nonlinear behavior of soil as well as the nonlinearity generated at the interface between the soil and the pile as the result of applied loading considerably affect the response of piles. The soil–pile interface nonlinearity that governs the slippage of pile shows a clear influence on the pile head stiffnesses by providing two distinct values of stiffnesses corresponding to the push and the pull directional movement of piles; the two values are significantly different. Axial and bending strains generated in the piles show expected dependency on the amplitude of applied loading; the pile head-level bending strain increases almost linearly with the increase in the angle of pile inclination.

  相似文献   
5.
This paper presents a superposition method expanded for computing impedance functions (IFs) of inclined‐pile groups. Closed‐form solutions for obtaining horizontal, vertical, and rocking IFs, estimated by using pile‐to‐pile interaction factors, are proposed. IFs of solitary inclined piles, crossed IFs, and explicit incorporation of compatibility conditions for pile‐head movements are also appropriately taken into consideration. All of these factors should be known in advance and will be computed and shown for the most relevant cases. The accuracy of the proposed closed‐form solutions is verified for 2 × 2 and 3 × 3 square inclined‐pile groups embedded in an isotropic viscoelastic homogeneous half‐space soil medium, with hysteretic damping. The pile‐to‐pile interaction factors are computed by means of a three‐dimensional time‐harmonic boundary elements–finite elements coupling formulation. The results indicate that the IFs obtained from the proposed method are in good agreement with those obtained from the coupling formulation. Furthermore, crossed vertical‐rocking IFs of solitary piles need to be appropriately considered for obtaining rocking IFs when the number of piles is small. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号