首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
测绘学   1篇
地球物理   2篇
地质学   7篇
  2018年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.
Neogene-Quaternary post-collisional volcanism in Central Anatolian Volcanic Province (CAVP) is mainly characterized by calc-alkaline andesites-dacites, with subordinate tholeiitic-transitional-mildly alkaline basaltic volcanism of the monogenetic cones. Tepekoy Volcanic Complex (TVC) in Nigde area consists of base surge deposits, and medium to high-K andesitic-dacitic lava flows and basaltic andesitic flows associated with monogenetic cones. Tepekoy lava flows petrographically exhibit disequilibrium textures indicative of magma mixing/mingling and a geochemisty characterized by high LILE and low HFSE abundances, negative Nb–Ta, Ba, P and Ti anomalies in mantle-normalized patterns. In this respect, they are similar to the other calc-alkaline volcanics of the CAVP. However, TVC lava flows have higher and variable Ba/Ta, Ba/Nb, Nb/Zr, Ba/TiO2 ratios, indicating a heterogeneous, variably fluid-rich source. All the geochemical features of the TVC are comparable to orogenic andesites elsewhere and point to a sub-continental lithospheric mantle source enriched in incompatible elements due to previous subduction processes. Basaltic monogenetic volcanoes of CAVP display similar patterns, and HFS anomalies on mantle-normalized diagrams, and have incompatible element ratios intermediate between orogenic andesites and within-plate basalts (e.g. OIB). Accordingly, the calc-alkaline and transitional-mildly alkaline basaltic magmas may have a common source region. Variable degrees of partial melting of a heterogeneous source, enriched in incompatible elements due to previous subduction processes followed by fractionation, crustal contamination, and magma mixing in shallow magma chambers produced the calc-alkaline volcanism in the CAVP. Magma generation in the TVC, and CAVP in general is via decompression melting facilitated by a transtensional tectonic regime. Acceleration of the extensional regime, and transcurrent fault systems extending deep into the lithosphere favoured asthenospheric upwelling at the base of the lithosphere, and as a consequence, an increase in temperature. This created fluid-present melting of a fluid-enriched upper lithospheric mantle or lower crustal source, but also mixing with asthenosphere-derived melts. These magmas with hybrid source characteristics produced the tholeiitic-transitional-mildly alkaline basalts depending on the residence times within the crust. Hybrid magmas transported to the surface rapidly, favored by extensional post-collision regime, and produced mildly alkaline monogenetic volcanoes. Hybrid magmas interacted with the calc-alkaline magma chambers during the ascent to the surface suffered slight fractionation and crustal contamination due to relatively longer residence time compared to rapidly rising magmas. In this way they produced the mildly alkaline, transitional, and tholeiitic basaltic magmas. This model can explain the coexistence of a complete spectrum of q-normative, ol-hy-normative, and ne-normative monogenetic basalts with both subduction and within-plate signatures in the CAVP.  相似文献   
3.
Two main volcanic events are distinguished between Saraykent and Akçakışla in the Yozgat province of central Anatolia: (1) early Late Cretaceous–Palaeocene effusive activity, that produced a sequence of intermediate to felsic ‘basal lavas’; and (2) marginally later Palaeocene explosive activity that formed a series of covering ignimbrite flows. Due to their close temporal and spatial relation, geochemical comparisons were made between the silicic members of the lavas and ignimbrites, to identify chemical groups and their relative petrogenesis. The basal lavas range from calc‐alkaline basaltic andesites to dominant rhyolites. Based on trace element correlations three main geochemical groups were identified: the Akçakışla rhyolites (present as domes); Akçakışla rhyodacites‐dacites (lava flows); and Ozan‐Saraykent rhyolites (lava flows). Large‐ion lithophile elements have been mobile in all the groups, but mainly in the Akçakışla rhyolites. Rare earth element (REE) patterns show marked similarity between the Ozan and Saraykent basal lavas. The Akçakışla dome rhyolites are more fractionated with lower LaN/YbN ratios (c.10), whereas the Akçakışla basal lavas have much higher LaN/YbN ratios (c.30). The chemical coherence and petrographic similarities between the Saraykent and Ozan lavas suggest a single suite related via fractionation. Three geochemical groups were also established for the ignimbrites: Saraykent ignimbrite; Bağlıca ignimbrite‐Toklu‐Kızıldağ crystal tuffs; and Keklikpınar ignimbrite. The ignimbrites, like the basal lavas, display a pronounced depletion in Ba on ORG‐normalized plots. Relative to the basal lavas, chondrite‐normalized patterns for the ignimbrites are different in displaying negative Eu anomalies that indicate feldspar fractionation. The lack of geochemical overlap or coherence between any of the lava and ignimbrite groups suggests that they represent distinct eruptive events and are not related in any simple volcanic development and cogenetic sense. Two geochemical features are common to all the volcanic rock groups: (1) the presence of a Nb‐Ta anomaly, which is generally accepted as a crustal signature; and (2) the relatively low Y abundances which appear characteristic for the region as a whole. These fundamental features of the local silicic volcanism largely reflect source composition and effects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
4.
Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an “orogenic” fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts (sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb–Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the “alkaline” basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts (sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts (sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source characteristics. Indeed, HFS and other incompatible element ratios suggest the role of crustal contamination in the genesis of the CAVP monogenetic basalts.  相似文献   
5.
In this study, remote sensing (RS) with computer-based geographic information systems (GIS) techniques are used as a tool for monitoring the water basin area and water quality in Istanbul's relatively less polluted and comparatively less destroyed catchment of the metropolis drinking water dam reservoir named Terkos. It is necessary to work with recent data to be able to identify the effects of urbanization on the water quality of the Terkos dam catchment area that supplies drinking water to the metropolis. RS is an important tool to monitor water quality and urban terrain. For this aim, a project has been initiated at the Technical University Remote Sensing Laboratory, under the Istanbul Water and Sewerage Administration (ISKI) sponsorship in Istanbul. The project uses SPOT-PAN, XS and IRS-1C/D PAN and satellite data of 1993 and 2000 for urban analysis and Landsat-TM and LISS-III satellite data of 1992 and 2000 for water quality. For calibration and validation, ground truth samples are collected from the experimental area. The RS data was converted into the UTM coordinate system and image enhancement and classification techniques are used. Raster data is converted to vector data to assess the study area for analyzing in GIS for the purpose of planning and decision-making on protected water basin zones. As a result of monitoring land use and water quality changes, recommendations are made for planning and management of the protected environment of the Terkos catchment protected area. Measuring land use change is a very important issue for controlling the future development of the basin, GIS techniques are performed and results are illustrated in established models on the four protected zones of Terkos water basin.  相似文献   
6.
The sediment-hosted huntite-magnesite deposits are located in the Egirdir-Hoyran lake basin in the Isparta Angle (southern Turkey). The deposits occur at two different localities in the region: (1) Kemersirti huntite deposit, (2) Köytepe huntite-magnesite deposit. The huntite-magnesite occurrences are found in shallow lacustrine rocks of the Miocene-Pliocene Kizilcik Formation and formed as a result of Neogene tectonic activity. Based on X-ray diffraction and scanning electron microscopic studies, the mineral assemblage of huntite deposits contains mostly huntite, less magnesite, dolomite, very little calcite, illite, simectite, brucite, and quartz in the Kemersirti area but contain huntite, magnesite, dolomite, and calcite in the Köytepe area.In the huntite and magnesite-bearing huntite samples, MgO varies from 32.70 to 37.95 wt. %, CaO from 7.83 to 15.10 w.t. %, and SiO2 from 0.99 to 10.60 w.t. %. Ba and Sr are dominant minor elements in the deposits. Ba and Sr for huntite and magnesite bearing huntite in the study area vary from 11 to 233 ppm and from 325 to 765 ppm, respectively. As, U, Zr, V and Ce contents ranged from 11.5-146 ppm, 0.5-3.7 ppm, 1.4-13.2 ppm, 7-34 ppm, and 0.9-2.7 ppm respectively. The huntite-magnesite is characterized by relatively lower Ni (0.5-2.4 ppm) and Co (0.5-1.1 ppm) contents. The huntite and magnesite-bearing huntite occurrences have higher Ba, Sr, As, Zr, V, and U contents than those of the other elements. The d13C isotope values vary between 7.8‰ to 8.8‰ PDB for huntite+magnesite, 8.2‰ PDB for huntite, 1.4‰ PDB for magnesite+dolomite, and 4.0‰ PDB for limestone from deposits in the study area. The δ18O isotope values of the huntite deposits ranged from 30.4 to 35.5‰ SMOW for huntite+magnesite, 32.4‰ SMOW for huntite, 29.8‰ SMOW for magnesite+ dolomite, and 26.9‰ SMOW for limestone.The presence of nodular huntite and the abundance of gastropod, ostracoda and Chura shells in the carbonate units indicate that the huntite occurrences are precipitated at shallow, alkaline (8.5-9.5 pH) and lower temperature (approximately 25°C) lake conditions. The Mg++, Ca++ and Si++ ions for the huntite formation were derived from the surrounding rocks such as ultrabasic rocks, dolomite, dolomitic limestone, and limestone in the Egirdir-Hoyran lake basin. Also, the C isotope ratios indicate that the CO2 source for the huntite formations results to sedimentary basin from metamorphic CO2, carbonate rocks, fresh water carbonates, and ground water. The source of oxygen for the huntite formation may come from marine limestone, fresh water carbonates and meteoric water.  相似文献   
7.
Neogene-Quaternary post-collisional volcanism in Central Anatolian Volcanic Province (CAVP) is mainly characterized by calc-alkaline andesites-dacites, with subordinate tholeiitic-transitional-mildly alkaline basaltic volcanism of the monogenetic cones. Tepekoy Volcanic Complex (TVC) in Nigde area consists of base surge deposits, and medium to high-K andesitic-dacitic lava flows and basaltic andesitic flows associated with monogenetic cones. Tepekoy lava flows petrographically exhibit disequilibrium textures indicative of magma mixing/mingling and a geochemisty characterized by high LILE and low HFSE abundances, negative Nb–Ta, Ba, P and Ti anomalies in mantle-normalized patterns. In this respect, they are similar to the other calc-alkaline volcanics of the CAVP. However, TVC lava flows have higher and variable Ba/Ta, Ba/Nb, Nb/Zr, Ba/TiO2 ratios, indicating a heterogeneous, variably fluid-rich source. All the geochemical features of the TVC are comparable to orogenic andesites elsewhere and point to a sub-continental lithospheric mantle source enriched in incompatible elements due to previous subduction processes. Basaltic monogenetic volcanoes of CAVP display similar patterns, and HFS anomalies on mantle-normalized diagrams, and have incompatible element ratios intermediate between orogenic andesites and within-plate basalts (e.g. OIB). Accordingly, the calc-alkaline and transitional-mildly alkaline basaltic magmas may have a common source region. Variable degrees of partial melting of a heterogeneous source, enriched in incompatible elements due to previous subduction processes followed by fractionation, crustal contamination, and magma mixing in shallow magma chambers produced the calc-alkaline volcanism in the CAVP. Magma generation in the TVC, and CAVP in general is via decompression melting facilitated by a transtensional tectonic regime. Acceleration of the extensional regime, and transcurrent fault systems extending deep into the lithosphere favoured asthenospheric upwelling at the base of the lithosphere, and as a consequence, an increase in temperature. This created fluid-present melting of a fluid-enriched upper lithospheric mantle or lower crustal source, but also mixing with asthenosphere-derived melts. These magmas with hybrid source characteristics produced the tholeiitic-transitional-mildly alkaline basalts depending on the residence times within the crust. Hybrid magmas transported to the surface rapidly, favored by extensional post-collision regime, and produced mildly alkaline monogenetic volcanoes. Hybrid magmas interacted with the calc-alkaline magma chambers during the ascent to the surface suffered slight fractionation and crustal contamination due to relatively longer residence time compared to rapidly rising magmas. In this way they produced the mildly alkaline, transitional, and tholeiitic basaltic magmas. This model can explain the coexistence of a complete spectrum of q-normative, ol-hy-normative, and ne-normative monogenetic basalts with both subduction and within-plate signatures in the CAVP.  相似文献   
8.
9.
The estimation of the monthly mean flow is a critical issue in many water resource development projects. However, in practice the mean flow is not easily determined in ungauged and poorly gauged basins. Therefore, in the literature, various flow estimation methods have been developed recently for mountainous regions which are generally ungauged or poorly gauged basins. In this study a fuzzy logic model based on the Mamdani approach was developed to estimate the flow for poorly gauged mountainous basins. This model was applied to the Solakli Basin which is located in the Eastern Black Sea Region of Turkey. Limited rainfall and flow data are available for this basin. In addition to these variables, the stream and time coefficients were introduced and used as variables for modeling. The data was divided into training and testing phases. The model results were compared with the measured data. The comparison depends on seven statistical characteristics, four different error modes and the contour map method. It was observed that the fuzzy model developed in this study yielded reliable results.  相似文献   
10.
The climatic and physiographical factors of the Kozdere Creek Watershed are examined to find out the causes of the flood of August 11, 2004. Actual land use has been obtained from forest management stand plans and classified satellite images. The multispectral digital satellite data set belonging to years 1992, 1993, and 2005 was used to determine the status of land use. Physiographic factors, including the slope and the aspect, have been identified from digitized ortho-photo maps in the GIS environment. Since flow records of Kozdere are not available, flow values corresponding to different return periods were obtained using regression analysis of neighboring streams. No noticeable alteration of the land use occurred between 1992 and 2005. Since the physical factors are the same as they were during the 1985 rain, the flood after the 2004 rainfall cannot be due to the physiographical factors of the upper watershed. The existing channel in the neighborhood is not enough to convey even the 10-year return period flow. Thus, the 2004 flow did not fit into this cross-section and flooded houses on the alluvial fan. The cross-section of the Kozdere Creek passing through the PTT neighborhood should be increased, and the surface roughness should be decreased by covering the channel with concrete in order to prevent floods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号