首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2013年   1篇
  2009年   3篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   
2.
Guffanti  Marianne  Miller  Thomas P. 《Natural Hazards》2013,65(3):1519-1533
Avalanche warning services (AWS) are operated to protect communities and traffic lines in avalanche-prone regions of the Alps and other mountain ranges. In times of high avalanche danger, these services may decide to close roads or to evacuate settlements. Closing decisions are based on field observations, avalanche release statistics, and snow forecasts issued by weather services. Because of the spatial variability in the snowpack and the insufficient understanding of avalanche triggering mechanisms, closing decisions are characterized by large uncertainties and the information based on which AWS have to decide is always incomplete. In this paper, we illustrate how signal detection theory can be applied to make better use of the information at hand. The proposed framework allows the evaluation of past road closures and points to how the decision performance of AWS could be improved. To illustrate the proposed framework, we evaluate the decision performance of two AWS in Switzerland and discuss the advantages of such a formalized decision-making approach.  相似文献   
3.
Volcanic hazards to airports   总被引:3,自引:1,他引:2  
Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies, Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries—USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom—have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators.  相似文献   
4.
Volcanic-ash clouds are a known hazard to aviation, requiring that aircraft be warned away from ash-contaminated airspace. The exposure of aviation to potential hazards from volcanoes in the United States is significant. In support of existing interagency operations to detect and track volcanic-ash clouds, the United States has prepared a National Volcanic Ash Operations Plan for Aviation to strengthen the warning process in its airspace. The US National Plan documents the responsibilities, communication protocols, and prescribed hazard messages of the Federal Aviation Administration, National Oceanic and Atmospheric Administration, US Geological Survey, and Air Force Weather Agency. The plan introduces a new message format, a Volcano Observatory Notice for Aviation, to provide clear, concise information about volcanic activity, including precursory unrest, to air-traffic controllers (for use in Notices to Airmen) and other aviation users. The plan is online at http://www.ofcm.gov/p35-nvaopa/pdf/FCM-P35-2007-NVAOPA.pdf. While the plan provides general operational practices, it remains the responsibility of the federal agencies involved to implement the described procedures through orders, directives, etc. Since the plan mirrors global guidelines of the International Civil Aviation Organization, it also provides an example that could be adapted by other countries.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号