首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   8篇
  2009年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1995年   1篇
  1986年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The Dominique drill hole has penetrated the volcanic shieldof Eiao island (Marquesas) down to a depth of 800 m below thesurface and 691•5 m below sea-level with a percentage ofrecovery close to 100%. All the lavas encountered were emplacedunder subaerial conditions. From the bottom to the top are distinguished:quartz and olivine tholeiites (800–686 m), hawaiites,mugearites and trachyte (686–415 m), picritic basalts,olivine tholeiites and alkali basalts (415–0 m). The coredvolcanic pile was emplaced between 5•560•07 Ma and5•220•06 Ma. Important chemical changes occurred during this rather shorttime span (0•34 0•13 Ma). In particular, the lowerbasalts differ from the upper ones in their lower concentrationsof incompatible trace elements and their Sr, Nd and Pb isotopicsignature being closer to the HIMU end-member, whereas the upperbasalts are EM II enriched. The chemical differences betweenthe two basalt groups are consistent with a time-related decreasein the degree of partial melting of isotopically heterogeneoussources. It seems unlikely that these isotopic differences reflectchanges in plume dynamics occurring in such a short time span,and we tentatively suggest that they result from a decreasingdegree of partial melting of a heterogeneous EM II–HIMUmantle plume. Some of the intermediate magmas (the uppermost hawaiites andmugearites) are likely to be derived from parent magmas similarto the associated upper basalts through simple fractionationprocesses. Hawaiites, mugearites and a trachyte from the middlepart of the volcanic sequence have Sr–Nd isotopic signaturessimilar to those of the lower basalts but they differ from themin their lower 206Pb/204Pb ratios, resulting in an increasedDMM signature. Some of the hawaiites-mugearites also displayspecific enrichments in P2O5, Sr and REE which are unlikelyto result from simple fractionation processes. The isotopicand incompatible element compositions of the intermediate rocksare consistent with the assimilation of MORB-derived wall rocksduring fractional crystallization. The likely contaminant correspondsto Pacific oceanic crust, locally containing apatite-rich veinsand hydrothermal sulphides. We conclude that a possible explanationfor the DMM signature in ocean island basalts is a chemicalcontribution from the underlying oceanic crust and that studiesof intermediate rocks may be important to document the originof the isotopic features of plume-derived magmas. KEY WORDS: alkali basalt; assimilation; mantle heterogeneity; Marquesas; tholeiile *Corresponding author  相似文献   
2.
A pyroclastic tuff from the Velay volcanic province in the FrenchMassif Central contains blocks up to 30 cm long of local basementrocks, lava clasts, coarse-grained cumulates and pyroclasticfragments, with more or less diffuse boundaries with the hosttuff, which probably represent more consolidated parts of thetuff. All of the pyroclastics examined and approximately 10%of the cumulate xenoliths contain carbonates in variable amounts,textures and mineralogy. In some of the tuff samples, dolomiteoccurs in large amounts (up to 57%), principally as immiscibleglobules in trachytic melt (now glass), and represents the firstoccurrence of carbonatite reported from the Massif Central.The other carbonates, magnesiosiderite in the mafic cumulatesor occasionally in some tuffs, and calcite in the felsic cumulates,are always associated with a silicate glass of trachytic composition.Coexisting feldspars and carbonates in the various types ofsample are approximately in Sr isotopic equilibrium with aninitial ratio of about 0·7042. C- and O-isotopic compositionsof the carbonates covary and cover a very wide range of compositionfrom -2·9 to 3·9  相似文献   
3.
In the Northern Volcanic Zone of the Andes, the Cayambe VolcanicComplex consists of: (1) a basal, mostly effusive volcano, theViejo Cayambe, whose lavas (andesites and subordinate dacitesand rhyolites) are typically calc-alkaline; and (2) a younger,essentially dacitic, composite edifice, the Nevado Cayambe,characterized by lavas with adakitic signatures and explosiveeruptive styles. The construction of Viejo Cayambe began >1·1Myr ago and ended at 1·0 Ma. The young and still activeNevado Cayambe grew after a period of quiescence of about 0·6Myr, from 0·4 Ma to Holocene. Its complex history isdivided into at least three large construction phases (Angurealcone, Main Summit cone and Secondary Summit cone) and compriseslarge pyroclastic events, debris avalanches, as well as periodsof dome activity. Geochemical data indicate that fractionalcrystallization and crustal assimilation processes have a limitedrole in the genesis of each suite. On the contrary, field observations,and mineralogical and geochemical data show the increasing importanceof magma mixing during the evolution of the volcanic complex.The adakitic signature of Nevado Cayambe magmas is related topartial melting of a basaltic source, which could be the lowercrust or the subducted slab. However, reliable geophysical andgeochemical evidence indicates that the source of adakitic componentis the subducted slab. Thus, the Viejo Cayambe magmas are inferredto come from a mantle wedge source metasomatized by slab-derivedmelts (adakites), whereas the Nevado Cayambe magmas indicatea greater involvement of adakitic melts in their petrogenesis.This temporal evolution can be related to the presence of thesubducted Carnegie Ridge, modifying the geothermal gradientalong the Wadati–Benioff zone and favouring slab partialmelting. KEY WORDS: adakites; 40Ar/39Ar dating; Cayambe volcano; Ecuador; mantle metasomatism; Andes  相似文献   
4.
Overbank sedimentation rates were studied in former channels of three rivers in south-eastern France. Depth and spatial distribution of sediment, as well as geometry, hydrological connectivity and age of 39 lakes, were both measured and calculated. The mean sedimentation rate of lakes varied between 0 and 2·57 cm year−1. Sedimentation rates are linked to water depth and often undergo a decreasing gradient from the downstream outlet to the inner part of the lake. Multiple regression modelling demonstrates that sediment depth is essentially a function of overbank flow frequency. The greater the difference between upstream and downstream overbank flow frequency, the faster the sedimentation rate. These differences in sedimentation rates also correspond to different former channel geometry: the rates are slower in narrow and straight channels (former braided, and point-bar backwater channels), and faster in large and sinuous channels (exhibiting meanders, anastomosing channels and coves). The suspended sediment flux is variable from one reach to another, the middle reach of the Rhône conveying more sediment than the upper reaches, the Doubs or the Ain reaches. The suspended sediment flux does not explain a statistical difference in lake sedimentation rates between the reaches, which also provide clear evidence of the importance of local connectivity controls. Sedimentation patterns were also complicated by temporal changes in lake connectivity associated with geomorphological or anthropogenic changes operating within the main channel.  相似文献   
5.
A multi-method geochronological approach is applied to unravelthe dynamics of a paired metamorphic belt in the Coastal Cordilleraof central Chile. This is represented by high-pressure–low-temperaturerocks of an accretionary prism (Western Series), and a low-pressure–high-temperatureoverprint in the retro-wedge with less deformed metagreywackes(Eastern Series) intruded by magmas of the coeval arc. A pervasivetransposition foliation formed in metagreywackes and interlayeredoceanic crust of the Western Series during basal accretion nearmetamorphic peak conditions (350–400°C, 7–11kbar) at 292–319 Ma (40Ar/39Ar phengite plateau ages).40Ar/39Ar UV laser ablation ages of phengite record strain-freegrain growth and recrystallization with a duration of 31–41Myr during a pressure release of 3–4 kbar. During earlyaccretion the main intrusion in the arc occurred at 305 Ma (Pb–Pbevaporation; zircon) and the Eastern Series was overprintedby a short high-temperature metamorphism at 3 kbar, 296–301Ma (40Ar/39Ar muscovite plateau ages). Fission-track ages ofzircon (206–232 Ma) and of apatite (80–113 Ma) aresimilar in both series, indicating synchronous cooling duringdistinct periods of exhumation. Early exhumation (period I)during continuing basal accretion proceeded with mean ratesof 0·19–0·56 mm/yr, suggesting that erosionin a tectonically active area was an important unroofing mechanism.At the same time mean rates were 0·03–0·05mm/yr in the Eastern Series, where crustal thickening was minor.A shallow granite intruded into the Western Series at 224 Ma,at the end of basal accretion activity, when exhumation ratesdecreased to 0·04–0·06 mm/yr in both seriesduring period II (100–225 Ma). Major extension, basinformation and local bimodal dyke intrusion at 138 Ma were accompaniedby mean cooling rates of 1–2°C/Myr. Accelerated coolingof 3–5°C/Myr at 80–113 Ma suggests a mid-Cretaceousconvergence event (period III). After 80 Ma cooling rates decreasedto 1–2°C/Myr (period IV). The pressure–temperature–deformation–timeinformation for subduction, basal accretion and exhumation inthe accretionary wedge of central Chile illustrates that theseprocesses reflect a continuous cyclic mass flow that lastednearly 100 Myr, while the retro-wedge remained stable. Afterthe cessation of accretion activity a similarly long periodof retreat of the subducting slab occurred; this ended withrenewed convergence and shortening of the continental margin. KEY WORDS: exhumation rates; Ar/Ar geochronology; fission-track geochronology; Chile; paired metamorphic belt  相似文献   
6.
Extensive sampling of the Antisana volcano in Ecuador (NorthernVolcanic Zone of the Andes) has revealed the presence of adakite-likerocks throughout the edifice, i.e. rocks with geochemical characteristicsclose, but not identical, to those of slab melts. Two main volcanicgroups have been distinguished, characterized by two distinctevolutionary trends. The AND group, mostly composed of andesites,shows the clearest adakitic characteristics such as high La/Yband Sr/Y ratios and low heavy rare earth element (HREE) contents.The CAK group, composed of high-K andesites and dacites, displaysless pronounced adakitic-like characteristics. Although themore basic rocks of each group are difficult to distinguishon many geochemical diagrams, a geochemical study shows thatthe evolution of the AND and CAK groups is dominated by differentpetrogenetic processes. The isotopic characteristics of theCAK rocks suggest that evolution of this group is dominatedby a limited assimilation–fractional crystallization processwithin the granitic continental basement of the cordillera.In the AND group, the abundances of incompatible elements, suchas Nb or HREE, suggest that the series was produced by a partialmelting process in a mantle rich in garnet, amphibole and/orclinopyroxene. Such a mantle source has been demonstrated (experimentallyand by exhumed mantle xenoliths) to be produced in subductionzones where slab melts react with and metasomatize the mantlewedge. In Ecuador, magmas erupted in the Western Cordillera(trenchward relative to Antisana volcano) are true adakites,suggesting that slab melts can be responsible for the metasomatismof the mantle wedge beneath the NVZ in Ecuador. If mantle convectioncan drag down this modified mantle beneath Antisana volcano,destabilization of metasomatic amphibole at appropriate pressuresin this modified garnetiferous mantle can adequately explainthe formation and the geochemical features of Antisana lavas. KEY WORDS: subduction; adakite; metasomatism; Ecuador; AFC; Sr and Nd isotopes  相似文献   
7.
The Chonos Metamorphic Complex forms part of a belt of low-grademetamorphic rocks in the Chilean Coastal Cordillera that areinterpreted as Palaeozoic–Mesozoic accretionary complexes.It comprises metapsammopelitic schists, metabasites and meta-ironstonesoccurring in two contrasting units. Special attention duringmicroprobe study of key samples was given to the chemical zonationof minerals. Subsequently, conventional geothermobarometry andthat using thermodynamic calculations were applied. The Easternbelt comprises rocks that are metamorphosed to pumpellyite–actinolitefacies conditions and show a low degree of deformation withwell-preserved sedimentary and igneous structures. Maximum P–Tconditions were around 5·5 kbar and 250–280°C.The rocks of the Western belt are characterized by a transitionbetween greenschist and albite–epidote–amphibolitefacies metamorphism and show a penetrative tectonic transpositionfoliation S2 formed close to the pressure maximum. Maximum P–Tconditions vary around 8–10 kbar and 380–500°Coverstepping the stilpnomelane + phengite stability. High pressuresin this belt are confirmed by regionally distributed phengiteswith high Si contents up to 3·5 Si per formula unit.Regional distribution of maximum temperatures is reflected bythe composition of actinolitic hornblendes within the metabasites.In a garnet-bearing metabasite of the Western belt, oscillatorygrowth zoning of garnet was observed. The composition of correspondingmineral inclusions suggests that a prograde P–T path duringgarnet growth evolved from 7·5 kbar and 375°C toabout 9·4 kbar and 500°C. Late garnet grew synkinematicallywith penetrative deformation. The retrograde P–T pathin the rocks of the Western belt is constrained by the compositionof mainly late strain-free minerals and involves slight coolingduring decompression. Both belts are part of a subduction system.The apparent P–T gap between the belts is due to theirjuxtaposition during exhumation. The Eastern belt constitutesthe transition towards the backstop system of the accretionaryprism that is represented by the Western belt, whereas the absenceof very low grade rocks west of the Western belt is attributedto tectonic erosion, which was possibly caused by subductionof a ridge. KEY WORDS: Chonos Metamorphic Complex; accretionary complex; high-pressure–low-temperature metamorphism; oscillatory garnet zonation; phengite; P–T paths  相似文献   
8.
The Mboutou complex is one of a line of early Tertiary ringcomplexes which runs from Lake Chad to the Gulf of Guinea, noneof which has hitherto been described in detail. The main rocktypes are layered gabbros and gabbronorites, with minor bodiesof quartz-syenodiorite, quartz-syenite and hypersolvus granite.Feldspars form a continuum with exceptional compositional range,from An85Ab13Or2 to around An1Ab46Or55, and form an entirelyhypersolvus sequence with very strong zoning in the syenodiorites.Ca-rich clinopyroxenes (salite and calcic augite) and olivines(Fo78–62) have restricted range. Orthopyroxene-bearingleucogabbros and syenodiorites contain minor orthopyroxene (En62Fs35Wo3)and quartz; olivine and orthopyroxene never coexist. In moreevolved rocks amphibole (magnesio-hornblende to ferroedenite)and minor biotite, showing progressive Fe-enrichment, are theonly mafic silicates.Major-element rock chemistry, minor elementsin clinopyroxenes and biotite chemistry show that, notwithstandingits thoroughly anorogenic setting, Mboutou was, at the outset,only very mildly alkaline. Its more evolved members embarkedon a line of evolution with some calc-alkaline characteristics,probably because of ingress of water into residual batches ofmagma, a possibility supported by stable isotope data. Thischange in behaviour corresponded with the sudden appearanceof quartz and orthopyroxene, which was not in equilibrium withclinopyroxene on the two-pyroxene surface. Amphibole then becamethe main mafic silicate with further increase in . The more evolved rocks are relatively highly altered,but Fe-Ti oxide pairs suggest that was maintained near to and above the QFM buffer and the rangeof biotite compositions further suggests crystallization undera regime of decreasing . Biotites maintain alkaline characteristics throughout the sequence. Zoningpatterns in the ternary feldspars in the syenodiorites, andthe hypersolvus character of the final granite, limit maximumvalues of to < 1 kb, and suggest minimum temperatures for the end of crystallizationin the syenodiorites of{small tilde} 850 ?C.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号