首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   8篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2005年   3篇
  1991年   2篇
排序方式: 共有9条查询结果,搜索用时 375 毫秒
1
1.
High-temperature–pressure experiments were carried outto determine the chlorine–hydroxyl exchange partitioncoefficient between hornblende and melt in the 1992 Unzen dacite.Cl in hornblende and melt was analyzed by electron microprobe,whereas OH in hornblende and melt was calculated assuming anionstoichiometry of hornblende and utilizing the dissociation reactionconstant for H2O + O = 2(OH) in water-saturated melt, respectively.The partition coefficient strongly depends on the Mg/(Mg + Fe)ratio of hornblende, and is expressed as ln K1 = (Cl/OH)hb/(Cl/OH)melt= 2·37 – 4·6[Mg/(Mg + Fe)]hb at 2–3kbar and 800–850°C. The twofold variation in Cl contentin the oscillatory zoned cores of hornblende phenocrysts inthe 1991–1995 dacite cannot be explained by the dependenceof the Cl/OH partition coefficient on the Mg/(Mg + Fe)hb ratio,and requires c. 80% variation of the Cl/OH ratio of the coexistingmelt. Available experimental data at 200 MPa on Cl/OH fractionationbetween fluid and melt suggest that c. 1·2–1·8wt % degassing of water from the magma can explain the required80% variation in the Cl/OH ratio of the melt. The negative correlationbetween Al content and Mg/(Mg + Fe) ratio in the oscillatoryzoned cores of the hornblende phenocrysts is consistent withrepeated influx and convective degassing of the fluid phasein the magma chamber. KEY WORDS: chlorine; element partitioning; hornblende; oscillatory zoning; Unzen volcano  相似文献   
2.
The spinosaurids represent an enigmatic and highly unusual form of large tetanuran theropods that were first identified in 1915. A recent flurry of discoveries and taxonomic revisions of this important and interesting clade has added greatly to our knowledge. Spinosaur body fossils are however generally rare and most species are known from only limited skeletal remains. Their unusual anatomical adaptations to the skull, limbs and axial column all differ from other large theropods and point to an unusual ecological niche and a lifestyle intimately linked to water.  相似文献   
3.
HOLTZ  F.; BARBEY  P. 《Journal of Petrology》1991,32(5):959-978
The Tourem granitic complex (North Portugal) consists of quartz-and alkali-feldspar-rich felsic granites, biotite- and plagioclase-richheterogeneous granites, and cordierite-biotite granites, containingnumerous enclaves of orthogneisses and metapelitic schists.Mineralogical, chemical, and experimental data suggest thatall the granites and the orthogneiss enclaves are geneticallyrelated. The felsic granites are characterized by normally zoned plagioclase,absence of cordierite, high SiO2 and K2O (72–74 wt.% and5?4–6?4 wt.%, respectively), moderate P2O5 and REE (0?22–0?24%and 85?0–95?7 ppm), and low Fe2O3* and Zr contents (1?3–1?5%and 80–90 ppm). These features are consistent with thoseof restite-free melts formed by low extents of melting. Meltingexperiments show that these felsic granites are likely to bederived by melting of a source material similar to the orthogneissenclaves under low water activities (0?5), at relatively hightemperature ( 800?C) and <30% melting. The heterogeneous and cordierite-biotite granites display highcordierite contents (up to 30%) in addition to biotite (5–25%),complexly zoned plagioclase, and high Fe2O3 (2?72–6?99%),CaO (0?56–1?95%), Zr (101–213 ppm), and Ce (39?8–98?1ppm) contents, suggesting that the melts contained significantproportions of residual biotite, cordierite, plagioclase, andaccessories. Experimental data indicate that the melts weregenerated under water-undersaturated conditions but by higherextents of melting (30–60% melting) with probably a largeramount of available water compared with the felsic granites. The major and trace element chemical trends of the granites,which do not define single arrays on two-element variation diagrams,and experimental data show that the generation of the Touremanatectic complex cannot be explained by the restite unmixingmodel but could have resulted from sequential low extents ofmelting with efficient melt segregation followed by higher extentsof melting with restite retention.  相似文献   
4.
       根据大陆下地壳的成分、含水基性岩体系部分熔融的基本原理和实验岩石学资料,本文对大陆下地壳的熔融机制展 开了讨论,并在此基础上对比实验熔体与大别山C 型埃达克岩的成分,进而探讨约束源岩成分、熔融的温压条件和部分熔 融程度。研究结果表明,大陆下地壳总体上是中- 基性(SiO2 50%~60% )和含少量水的,在缺乏流体相条件下伴随含水 矿物脱水的部分熔融是下地壳产生含水长英质熔体和无水残留体的主要机制。角闪岩在中等压力下(1.0~1.2 GPa,相当于 35~40 km)理论上能够产生石榴石含量超过~20% 的熔融残余,从而使得与之平衡的长英质熔体具有低Y,高Sr/Y 和La/Yb 比值等埃达克岩特征。基于水活度模型和变质基性岩p -t 相图的估算显示,含有40%~60% 角闪石的源岩(含水0.8%~1.2%) 在~950 ℃能够得到最大为15%~20% 的熔体,该熔体分数满足熔体分离的要求。大别山C型埃达克岩主要为高钾钙碱性系 列(K2O 3.5%~5%),与实验熔体成分的对比可知,其无法由低钾源岩在合理的部分熔融程度形成。根据钾在角闪岩部分熔 融过程过表现为强不相容元素的原理,利用合理假设的残余体组合得到的分配系数,估算K2O 含量为~1% 的源岩在熔融程 度为15%~20% 的情况下能够得到类似大别山C 型埃达克岩成分的熔体。  相似文献   
5.
焦永玲等对笔者发表在《高校地质学报》2012年第18 卷第1 期的“含水大陆下地壳的部分熔融:大别山C型埃达克 岩成因探讨”一文提出质疑。针对他们的问题,笔者进行了回复,并提出:(1)大别山C 型埃达克岩的源岩可能是基性的 (SiO2 含量50% 左右),但是比较准确的成分估计还需要进一步研究;(2)变质含水基性岩(角闪岩)在1.0~1.2 GPa 压力下(相当于35~40 km)可以形成含石榴石20% 以上的残余体;(3)中钾的角闪岩(K2O 含量1% 左右)部分熔融可以形成高钾钙碱性长英质熔体(K2O 含量3.5%~5%)。  相似文献   
6.
Crystallization experiments were conducted on dry glasses fromthe Unzen 1992 dacite at 100–300 MPa, 775–875°C,various water activities, and fO2 buffered by the Ni–NiObuffer. The compositions of the experimental products and naturalphases are used to constrain the temperature and water contentsof the low-temperature and high-temperature magmas prior tothe magma mixing event leading to the 1991–1995 eruption.A temperature of 1050 ± 75°C is determined for thehigh-temperature magma based on two-pyroxene thermometry. Theinvestigation of glass inclusions suggests that the water contentof the rhyolitic low-temperature magma could be as high as 8wt % H2O. The phase relations at 300 MPa and in the temperaturerange 870–900°C, which are conditions assumed to berepresentative of the main magma chamber after mixing, showthat the main phenocrysts (orthopyroxene, plagioclase, hornblende)coexist only at reduced water activity; the water content ofthe post-mixing dacitic melt is estimated to be 6 ± 1wt % H2O. Quartz and biotite, also present as phenocrysts inthe dacite, are observed only at low temperature (below 800–775°C).It is concluded that the erupted dacitic magma resulted fromthe mixing of c. 35 wt % of an almost aphyric pyroxene-bearingandesitic magma (1050 ± 75°C; 4 ± 1 wt % H2Oin the melt) with 65 wt % of a phenocryst-rich low-temperaturemagma (760–780°C) in which the melt phase was rhyolitic,containing up to 8 ± 1 wt % H2O. The proportions of rhyoliticmelt and phenocrysts in the low-temperature magma are estimatedto be 65% and 35%, respectively. It is emphasized that the strongvariations of phenocryst compositions, especially plagioclase,can be explained only if there were variations of temperatureand/or water activity (in time and/or space) in the low-temperaturemagma. KEY WORDS: Unzen volcano; magma mixing; experimental study  相似文献   
7.
Melting experiments have been performed on a peraluminous quartzo-feldspathicgneiss from Northern Portugal. This gneiss occurs as xenolithsin the Tourem anatectic complex and is the most probable sourcerock for the surrounding anatectic granites. On the basis offield, petrological, and geochemical data, it can be shown thatanatexis took place in the stability field of cordierite + biotiteand that the evolution of magmas is the result of processesinvolving segregation of partial melt and separation of restiteminerals. Experiments were performed at 700, 750, and 800 ?C, 3 and 5kb, and various H2O activities (aH2O) to clarify the influenceof aH2O and melt fraction on the composition of the generatedmelts. Biotite and cordierite are the two main ferromagnesianphases observed in the run products. Cordierite is formed byincongment melting of biotite. For relatively low melt fractions (< 30–35 wt. %),the partial melts coexisting with quartz, alkali feldspar, andplagioclase have a minimum or near-minimum melt composition.The melts become richer in potassium with decreasing aH2O. Thisresult using a natural rock as starting material is in goodagreement with results achieved in the synthetic Qz-Ab-Or system.In the stability field of biotite and cordierite, the influenceof aH2O on melt composition is at least as important as theeffect of changing P and/or T. For higher melt fractions the composition of the melt is stronglycontrolled by the disappearance of alkali feldspar and the meltsbecome richer in An and poorer in Or with increasing degreeof melting. The wide range of compositions (especially for K2O, which variesfrom 3.5 to 5.4%) observed in the experimental peraluminousmelts demonstrates that a wide variety of granitoid magmas maybe produced from the same source rocks. The application of theexperimental results to the Tourem anatectic complex shows thatmelting occurred at H2O-undersaturated conditions (4–5wt. % H2O in the melts, corresponding to aH2O of {small tilde}0.5at 5 kb). Experimental melts similar in composition to the mostleucocratic granite of the Tourem anatectic complex (consideredto approximate the composition of the generated melt) were obtainedaround 800 ?C, suggesting that this temperature was attainedduring the peak of anatexis.  相似文献   
8.
Crystallization experiments were performed at 200 MPa in thetemperature range 1150–950°C at oxygen fugacitiescorresponding to the quartz–fayalite–magnetite (QFM)and MnO–Mn3O4 buffers to assess the role of water andfO2 on phase relations and differentiation trends in mid-oceanridge basalt (MORB) systems. Starting from a primitive (MgO9·8 wt %) and an evolved MORB (MgO 6·49 wt %),crystallization paths with four different water contents (0·35–4·7wt % H2O) have been investigated. In primitive MORB, olivineis the liquidus phase followed by plagioclase + clinopyroxene.Amphibole is present only at water-saturated conditions below1000°C, but not all fluid-saturated runs contain amphibole.Magnetite and orthopyroxene are not stable at low fO2 (QFM buffer).Residual liquids obtained at low fO2 show a tholeiitic differentiationtrend. The crystallization of magnetite at high fO2 (MnO–Mn3O4buffer) results in a decrease of melt FeO*/MgO ratio, causinga calc-alkaline differentiation trend. Because the magnetitecrystallization temperature is nearly independent of the H2Ocontent, in contrast to silicate minerals, the calc-alkalinedifferentiation trend is more pronounced at high water contents.Residual melts at 950°C in a primitive MORB system havecompositions approaching those of oceanic plagiogranites interms of SiO2 and K2O, but have Ca/Na ratios and FeO* contentsthat are too high compared with the natural rocks, implyingthat fractionation processes are necessary to reach typicalcompositions of natural oceanic plagiogranites. KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite  相似文献   
9.
The genetic relationship between different types of granite is critical for understanding the formation and evolution of granitic magma. Fluid-rock interaction experiments between two-mica leucogranite and boron-rich fluids were carried out at 600–700°C and 200 MPa to investigate the effects of boron content in fluid and temperature on the reaction products. Our experimental results show that tourmaline granite can be produced by reactions between boron-rich fluid and two-mica granite.At 700°C, the addition of boron-rich fluid resulted in partial melting of two-mica granite and crystallization of tourmaline from the boron-rich partial melt. Increasing boron concentration in fluid promotes the melting of two-mica granite and the growth of tourmaline. No melt was produced in experiments at 600°C, in which Fe, Mg and Al released from biotite decomposition combined with boron from the fluid to form tourmaline under subsolidus conditions. The Na required for tourmaline crystallization derived from Na/K exchange between feldspar and the K released by biotite decomposition. The produced tourmaline generally has core-rim structures, indicating that the composition of melt or fluid evolved during tourmaline crystallization.Based on the experimental results, we propose that tourmaline granite veins or dikes can be formed by the reactions between boron-rich fluids, presumably produced by devolatilization of boron-bearing granitic magma, and incompletely crystallized granite at the top of the magma chamber. This "self-metasomatism" involving boron-rich fluid in the late stage of magma crystallization could be an important mechanism for the formation of tourmaline granite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号